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A TIME-INDEPENDENT CONDITIONAL

FOURIER-FEYNMAN TRANSFORM AND

CONVOLUTION PRODUCT ON AN ANALOGUE OF

WIENER SPACE

Dong Hyun Cho

Abstract. Let C[0, t] denote the function space of all real-valued
continuous paths on [0, t]. Define Xn : C[0, t]→ Rn+1 by Xn(x) =
(x(t0), x(t1), · · · , x(tn)), where 0 = t0 < t1 < · · · < tn < t is a
partition of [0, t]. In the present paper, using a simple formula for
the conditional expectation given the conditioning function Xn, we
evaluate the Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-Feynman
transform and the conditional convolution product of the cylinder
functions which have the form

f((v1, x), · · · , (vr, x)) for x ∈ C[0, t],

where {v1, · · · , vr} is an orthonormal subset of L2[0, t] and f ∈
Lp(Rr). We then investigate several relationships between the con-
ditional Fourier-Feynman transform and the conditional convolu-
tion product of the cylinder functions.

1. Introduction and preliminaries

Let C0[0, t] denote the Wiener space, that is, the space of real-valued
continuous functions x on the closed interval [0, t] with x(0) = 0. On
the space C0[0, t], the concept of an analytic Fourier-Feynman trans-
form was introduced by Brue [1]. Huffman, Park and Skoug [11] de-
fined a convolution product on C0[0, t] and then, established various
relationships between the analytic Fourier-Feynman transform and the
convolution product. Furthermore, Chang and Skoug [4] introduced the
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concepts of conditional Fourier-Feynman transform and conditional con-
volution product on the Wiener space C0[0, t]. In that paper, they also
examined the effects that drift has on the conditional Fourier-Feynman
transform, the conditional convolution product, and various relation-
ships that occur between them. Further works were studied by Chang,
Cho, Kim, Song and Yoo [3, 8]. In fact, Cho and his coauthors [3] intro-
duced the L1-analytic conditional Fourier-Feynman transform and the
conditional convolution product over Wiener paths in abstract Wiener
space and then, established their relationships between them of certain
cylinder type functions. Cho [8] extended the relationships between
the conditional convolution product and the Lp(1 ≤ p ≤ 2)-analytic
conditional Fourier-Feynman transform of the same kind of cylinder
functions. Moreover, on C[0, t], the space of the real-valued contin-
uous paths on [0, t], Kim [14] extended the relationships between the
conditional convolution product and the Lp(1 ≤ p ≤ ∞)-analytic condi-
tional Fourier-Feynman transform of the functions in a Banach algebra
which corresponds to the Cameron-Storvick’s Banach algebra S [2]. Cho
[5, 6] established several relationships between the L1-analytic condi-
tional Fourier-Feynman transform and the conditional convolution prod-
uct of the cylinder functions on C[0, t]. In particular, he [5] derived an
evaluation formula for the Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-
Feynman transform and the conditional convolution product of the same
cylinder functions with the conditioning function Xn+1 : C[0, t]→ Rn+2

given by Xn+1(x) = (x(t0), x(t1), · · · , x(tn), x(tn+1)) where 0 = t0 <
t1 < · · · < tn < tn+1 = t is a partition of [0, t], and then, proved their
relationships. Note that Xn+1 depends on the present time t, that is,
the expectation is taken over the paths which pass through a particular
point at the time t.

In this paper, we further develop the relationships in [3, 5, 6, 8, 14]
on the more generalized space (C[0, t], wϕ), the analogue of the Wiener
space associated with the probability measure ϕ on the Borel class
B(R) of R [12, 16, 17]. For the conditioning function Xn : C[0, t] →
Rn+1 given by Xn(x) = (x(t0), x(t1), · · · , x(tn)) which is independent of
the present time t, we proceed to study the relationships between the
conditional convolution product and the analytic conditional Fourier-
Feynman transform of the cylinder functions defined on C[0, t]. In fact,
using a simple formula for the conditional wϕ-integrals givenXn, we eval-
uate the Lp(1 ≤ p ≤ ∞)-analytic conditional Fourier-Feynman trans-
form and the conditional convolution product for the functions of the
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form

f((v1, x), · · · , (vr, x)) for wϕ-a.e. x ∈ C[0, t],

where {v1, · · · , vr} is an orthonormal set in L2[0, t] and f ∈ Lp(Rr). We
then investigate several relationships between the conditional Fourier-
Feynman transforms and the conditional convolution products of the
cylinder functions. Finally, we show that the Lp-analytic conditional

Fourier-Feynman transform T
(p)
q [[(F ∗ G)q|Xn](·, ~ξn)|Xn] of the condi-

tional convolution product [(F ∗ G)q|Xn] for the cylinder functions F
and G, can be expressed by the formula

T (p)
q [[(F ∗G)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
T (p)
q [F |Xn]

(
1√
2
y,

1√
2

(~ζn + ~ξn)

)][
T (p)
q [G|Xn]

(
1√
2
y,

1√
2

(~ζn − ~ξn)

)]

for a nonzero real q, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1.
Thus the analytic conditional Fourier-Feynman transform of the condi-
tional convolution product for the cylinder functions, can be interpreted
as the product of the analytic conditional Fourier-Feynman transform
of each function.

Throughout this paper, let C and C+ denote the set of the complex
numbers and the set of the complex numbers with positive real parts,
respectively.

Now, we introduce the concrete form of the probability measure wϕ
on the Borel class B(C[0, t]) of C[0, t]. For a positive real t, let C =
C[0, t] be the space of all real-valued continuous functions on the closed
interval [0, t] with the supremum norm. For ~t = (t0, t1, · · · , tn) with
0 = t0 < t1 < · · · < tn ≤ t, let J~t : C[0, t]→ Rn+1 be the function given
by J~t(x) = (x(t0), x(t1), · · · , x(tn)). For Bj (j = 0, 1, · · · , n) in B(R), the

subset J−1~t
(
∏n
j=0Bj) of C[0, t] is called an interval and let I be the set

of all such intervals. For a probability measure ϕ on (R,B(R)), let

mϕ

[
J−1~t

( n∏
j=0

Bj

)]
=

[ n∏
j=1

1

2π(tj − tj−1)

] 1
2
∫
B0

∫
∏n
j=1Bj

exp

{
−1

2

n∑
j=1

(uj − uj−1)2

tj − tj−1

}
d~udϕ(u0).

Then B(C[0, t]) coincides with the smallest σ-algebra generated by I
and there exists a unique probability measure wϕ on (C[0, t],B(C[0, t]))
such that wϕ(I) = mϕ(I) for all I in I. This measure wϕ is called an
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analogue of the Wiener measure associated with the probability measure
ϕ [12, 16, 17, 19].

Let {ek : k = 1, 2, · · · } be a complete orthonormal subset of L2[0, t]
such that each ek is of bounded variation. For v in L2[0, t] and x in

C[0, t], let (v, x) = limn→∞
∑n

k=1〈v, ek〉
∫ t
0 ek(s)dx(s) if the limit exists,

where 〈·, ·〉 denotes the inner product over L2[0, t]. (v, x) is called the
Paley-Wiener-Zygmund integral of v according to x. Note that we also
denote the dot product on the r-dimensional Euclidean space Rr by
〈·, ·〉Rr .

Applying Theorem 3.5 in [12], we can easily prove the following the-
orem.

Theorem 1.1. Let {h1, h2, · · · , hr} be an orthonormal subset of
L2[0, t]. For i = 1, 2, · · · , r, let Zi(x) = (hi, x) on C[0, t]. Then Z1, Z2, · · · ,
Zr are independent and each Zi has the standard normal distribution.
Moreover, if f : Rr → R is Borel measurable, then∫

C
f(Z1(x), Z2(x), · · · , Zr(x))dwϕ(x)

∗
=

(
1

2π

) r
2
∫
Rr
f(u1, u2, · · · , ur) exp

{
−1

2

r∑
j=1

u2j

}
d~u,

where
∗
= means that if either side exists then both sides exist and they

are equal.

Let F : C[0, t]→ C be integrable and X be a random vector on C[0, t]
assuming that the value space of X is a normed space equipped with the
Borel σ-algebra. Then, we have the conditional expectation E[F |X] of F
given X from a well known probability theory [15]. Furthermore, there
exists a PX -integrable complex-valued function ψ on the value space of
X such that E[F |X](x) = (ψ ◦ X)(x) for wϕ-a.e. x ∈ C[0, t], where
PX is the probability distribution of X. The function ψ is called the
conditional wϕ-integral of F given X and it is also denoted by E[F |X].

Throughout this paper, let 0 = t0 < t1 < · · · < tn < tn+1 = t be a
partition of [0, t] unless otherwise specified. For any x in C[0, t], define
the polygonal function [x] of x by

[x](s) =
n+1∑
j=1

χ(tj−1,tj ](s)

(
tj − s
tj − tj−1

x(tj−1) +
s− tj−1
tj − tj−1

x(tj)

)
+ χ{t0}(s)x(t0)

(1.1)
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for s ∈ [0, t], where χ(tj−1,tj ] and χ{t0} denote the indicator functions.

Similarly, for ~ξn+1 = (ξ0, ξ1, · · · , ξn+1) ∈ Rn+2, define the polygonal

function [~ξn+1] of ~ξn+1 by (1.1) where x(tj) is replaced by ξj for j =
0, 1, · · · , n+ 1.

In the following theorem, we introduce a simple formula for the con-
ditional wϕ-integrals on C[0, t] [7].

Theorem 1.2. Let Xn : C[0, t]→ Rn+1 be given by

Xn(x) = (x(t0), x(t1), · · · , x(tn)).(1.2)

Moreover let F be integrable on C[0, t] and PXn be the probability distri-

bution ofXn on (Rn+1,B(Rn+1)). Then, for PXn-a.e. ~ξn = (ξ0, ξ1, · · · , ξn)
∈ Rn+1,

E[F |Xn](~ξn) =

[
1

2π(t− tn)

] 1
2
∫
R
E[F (x− [x] + [~ξn+1])]

× exp

{
−(ξn+1 − ξn)2

2(t− tn)

}
dξn+1

(1.3)

where ~ξn+1 = (ξ0, ξ1, · · · , ξn, ξn+1) for ξn+1 ∈ R.

For a function F : C[0, t]→ C and λ > 0, let F λ(x) = F (λ−
1
2x) and

Xλ
n(x) = Xn(λ−

1
2x), where Xn is given by (1.2). Suppose that E[F λ]

exists for each λ > 0. Under the notations as used in Theorem 1.2, we
can obtain by (1.3)

E[F λ|Xλ
n ](~ξn) =

[
λ

2π(t− tn)

] 1
2
∫
R
E[F (λ−

1
2 (x− [x]) + [~ξn+1])]

× exp

{
−λ

2

(ξn+1 − ξn)2

t− tn

}
dξn+1

(1.4)

for PXλ
n
-a.e. ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, where PXλ

n
is the probability

distribution of Xλ
n on (Rn+1,B(Rn+1)). For y ∈ C[0, t], let Kλ

F (y, ~ξn)

be given by (1.4) where [~ξn+1] is replaced by y + [~ξn+1]. If Kλ
F (0, ~ξn)

has the analytic extension J∗λ(F )(~ξn) on C+ as a function of λ, then
it is called the conditional analytic Wiener wϕ-integral of F given Xn

with parameter λ and denoted by Eanwλ [F |Xn](~ξn) = J∗λ(F )(~ξn) for ~ξn ∈
Rn+1. Moreover, if for a nonzero real q, Eanwλ [F |Xn](~ξn) has the limit as
λ approaches to−iq through C+, then it is called the conditional analytic
Feynman wϕ-integral of F given Xn with parameter q and denoted by

Eanfq [F |Xn](~ξn) = limλ→−iq E
anwλ [F |Xn](~ξn).
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2. A time-independent conditional Fourier-Feynman trans-
form

For a given extended real number p with 1 < p ≤ ∞, suppose that p
and p′ are related by 1

p + 1
p′ = 1(possibly p′ = 1 if p =∞). Let Fn and F

be measurable functions such that limn→∞
∫
C |Fn(x)−F (x)|p′dwϕ(x) =

0. Then we write l.i.m.
n→∞

(wp
′
)(Fn) = F and call F the limit in the mean

of order p′. A similar definition is understood when n is replaced by a
continuously varying parameter.

We now define the conditional analytic Fourier-Feynman transform
of the functions on C[0, t].

Definition 2.1. Let F be defined on C[0, t] and Xn be given by

(1.2). For λ ∈ C+ and wϕ-a.e. y ∈ C[0, t], let Tλ[F |Xn](y, ~ξn) =

Eanwλ [F (y + ·)|Xn](~ξn) for PXn-a.e. ~ξn ∈ Rn+1 if it exists. For a
nonzero real q and wϕ-a.e. y ∈ C[0, t], define the L1-analytic con-

ditional Fourier-Feynman transform T
(1)
q [F |Xn] of F given Xn by the

formula T
(1)
q [F |Xn](y, ~ξn) = Eanfq [F (y + ·)|Xn](~ξn) for PXn-a.e. ~ξn ∈

Rn+1 if it exists. For 1 < p ≤ ∞, define the Lp-analytic conditional

Fourier-Feynman transform T
(p)
q [F |Xn] of F given Xn by the formula

T
(p)
q [F |Xn](·, ~ξn) = l.i.m.

λ→−iq
(wp

′
)(Tλ[F |Xn](·, ~ξn)) for PXn-a.e. ~ξn ∈ Rn+1,

where λ approaches to −iq through C+.

For each j = 1, · · · , n+ 1, let αj = 1√
tj−tj−1

χ(tj−1,tj ] on [0, t]. Let V

be the subspace of L2[0, t] generated by {α1, · · · , αn+1} and V ⊥ denote
the orthogonal complement of V . Let P and P⊥ be the orthogonal
projections from L2[0, t] to V and V ⊥, respectively.

Throughout this paper, let {v1, v2, · · · , vr} be an orthonormal subset
of L2[0, t] such that {P⊥v1, · · · , P⊥vr} is an independent set unless oth-
erwise specified. Let {e1, · · · , er} be the orthonormal set obtained from
{P⊥v1, · · · , P⊥vr} by the Gram-Schmidt orthonormalization process.
Now, for l = 1, · · · , r, let P⊥vl =

∑r
j=1 αljej be the linear combinations

of the ejs and let A = [αjl]r×r be the transpose of the coefficient matrix
of the combinations. We can also regard A as the linear transformation
TA : Rr → Rr given by

TA~z = ~zA,(2.1)
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where ~z is an arbitrary row-vector in Rr. Note that A is invertible so
that TA is an isomorphism. Let

(P~v)(t) = ((Pv1)(t), · · · , (Pvr)(t))(2.2)

and for ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1 let

(~ξn, (P~v)(~t)) =

( n∑
j=1

(ξj − ξj−1)(Pv1)(tj), · · · ,
n∑
j=1

(ξj − ξj−1)(Pvr)(tj)
)
.(2.3)

Furthermore, let

Γ(t, A) =
1

1 + (t− tn)‖(P~v)(t)A−1‖2Rr
(2.4)

and for λ ∈ C+, ~z ∈ Rr let

Φ(λ, ~z) =

(
λ

2π

) r
2

exp

{
−λ

2
[‖~z‖2Rr − (t− tn)Γ(t, A)〈~z, (P~v)(t)A−1〉2Rr ]

}
.(2.5)

Let (~v, x) = ((v1, x), · · · , (vr, x)) for x ∈ C[0, t]. For 1 ≤ p ≤ ∞, let A(p)
r

be the space of the cylinder functions Fr of the form

Fr(x) = fr(~v, x)(2.6)

for wϕ-a.e. x ∈ C[0, t], where fr ∈ Lp(Rr). Note that, without loss of
generality, we can take fr to be Borel measurable.

With the above notations we have the following lemma [6].

Lemma 2.2. Let λ ∈ C+ and k be an integrable function on Rr.
Furthermore, for ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,
ξn+1) and let

H(λ, k, ~ξn) =

(
λ

2π

) r
2
[

λ

2π(t− tn)

] 1
2
∫
R

∫
Rr
k((~v, [~ξn+1]) + TA~z)

× exp

{
−λ

2
‖~z‖2Rr −

λ(ξn+1 − ξn)2

2(t− tn)

}
d~zdξn+1

(2.7)

where TA is given by (2.1). Then we have

H(λ, k, ~ξn) = (Γ(t, A))
1
2

∫
Rr
k((~ξn, (P~v)(~t)) + TA~z)Φ(λ, ~z)d~z(2.8)

where (P~v)(t), (~ξn, (P~v)(~t)), Γ(t, A) and Φ(λ, ~z) are given by (2.2), (2.3),
(2.4) and (2.5), respectively.
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Theorem 2.3. Let Xn and Fr ∈ A(p)
r (1 ≤ p ≤ ∞) be given by

(1.2) and (2.6), respectively. Then for λ ∈ C+, wϕ-a.e. y ∈ C[0, t] and

PXn-a.e. ~ξn ∈ Rn+1, Tλ[Fr|Xn](y, ~ξn) exists and it is given by

Tλ[Fr|Xn](y, ~ξn) = H(λ, kfr(y), ~ξn)(2.9)

where kfr(y)(~u) = fr((~v, y) + ~u) for ~u ∈ Rr and H is given by (2.8).

Furthermore, as a function of y, Tλ[Fr|Xn](·, ~ξn) ∈ A(p)
r .

Proof. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,

ξn+1). For λ > 0, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn ∈ Rn+1, we have
by Theorem 2.2 in [5]

Kλ
Fr

(y, ~ξn) =

[
λ

2π(t− tn)

] 1
2
∫
R
E[Fr(λ

− 1
2 (x− [x]) + y + [~ξn+1])]

× exp

{
−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1

=

[
λ

2π(t− tn)

] 1
2
∫
R

(
λ

2π

) r
2
∫
Rr

fr((~v, y) + (~v, [~ξn+1]) + TA~z)

× exp

{
−λ

2
‖~z‖2Rr −

λ(ξn+1 − ξn)2

2(t− tn)

}
d~zdξn+1

= H(λ, kfr (y), ~ξn)

where H is given by (2.7) replacing k by kfr(y). By (2.8) of Lemma 2.2
we have

Kλ
Fr(y,

~ξn) = (Γ(t, A))
1
2

∫
Rr
fr((~v, y) + (~ξn, (P~v)(~t)) + TA~z)Φ(λ, ~z)d~z

where Γ(t, A) and Φ(λ, ~z) are given by (2.4) and (2.5), respectively. Since

‖~z‖2Rr − (t− tn)Γ(t, A)〈~z, (P~v)(t)A−1〉2Rr

=Γ(t, A)[‖~z‖2Rr + (t− tn)[‖~z‖2Rr‖(P~v)(t)A−1‖2Rr − 〈~z, (P~v)(t)A−1〉2Rr ]]

≥Γ(t, A)‖~z‖2Rr

(2.10)

by the Cauchy-Schwarz’s inequality, we have

|Φ(λ, ~z)| ≤
(
|λ|
2π

) r
2

exp

{
−Γ(t, A)Reλ

2
‖~z‖2Rr

}
≤
(
|λ|
2π

) r
2

(2.11)

for any λ ∈ C+ and ~z ∈ Rr. Now, by the Morera’s theorem with aids
of Hölder’s inequality and the dominated convergence theorem, we have
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(2.9) for λ ∈ C+. To prove Tλ[Fr|Xn](·, ~ξn) ∈ A(p)
r , let λ ∈ C+ and for

~u ∈ Rr let

γ(~u) = (Γ(t, A))
1
2

∫
Rr
fr(~u+ (~ξn, (P~v)(~t)) + TA~z)Φ(λ, ~z)d~z.

Then we have

γ(~u) = (Γ(t, A))
1
2

∫
Rr
fr(TA(((~ξn, (P~v)(~t)) + ~u)A−1 − ~z))Φ(λ, ~z)d~z

= (Γ(t, A))
1
2 (fr(TA·) ∗ Φ(λ, ·))(((~ξn, (P~v)(~t)) + ~u)A−1).

By the change of variable theorem∫
Rr
|fr(TA~u)|pd~u = |det(A−1)|

∫
Rr
|fr(~u)|pd~u <∞(2.12)

if 1 ≤ p < ∞ so that fr(TA·) is in Lp(Rr). Since Φ(λ, ·) ∈ L1(Rr), we
have fr(TA·) ∗Φ(λ, ·) ∈ Lp(Rr) for 1 ≤ p ≤ ∞ by the Young’s inequality

in [10, p.232]. Now γ = (Γ(t, A))
1
2 (fr(TA·) ∗ Φ(λ, ·))(((~ξn, (P~v)(~t)) +

·)A−1) ∈ Lp(Rr) by the change of variable theorem which completes the
proof.

From Theorem 3.2 of [6], we have the following theorem.

Theorem 2.4. Let Xn and Fr ∈ A(1)
r be given by (1.2) and (2.6),

respectively. Then for a nonzero real q, wϕ-a.e. y ∈ C[0, t] and PXn-a.e.
~ξn ∈ Rn+1, T

(1)
q [Fr|Xn](y, ~ξn) exists and it is given by (2.9) replacing λ

by −iq. Furthermore, as a function of y, T
(1)
q [Fr|Xn](·, ~ξn) ∈ A(∞)

r .

If {v1, v2, · · · , vr} is an orthonormal subset of V ⊥, then P⊥vl = vl
and Pvl = 0 for l = 1, · · · , r so that (P~v)(t) = 0. Furthermore, A is the

identity matrix, (~ξn, (P~v)(~t)) = ~0 ∈ Rr and Γ(t, A) = 1. Hence we have
the following theorem by Theorems 1.1, 2.3 and 2.4, and Lemmas 1.1
and 1.2 of [13].

Theorem 2.5. Let {e1, e2, · · · , er} be an orthonormal subset of V ⊥.

Let Xn be given by (1.2) and Fr ∈ A(p)
r (1 ≤ p ≤ 2) be given by (2.6)

replacing {v1, · · · , vr} by {e1, · · · , er}. Then for a nonzero real q, wϕ-

a.e. y ∈ C[0, t] and PXn-a.e. ~ξn ∈ Rn+1, T
(p)
q [Fr|Xn](y, ~ξn) exists and it

is given by

T (p)
q [Fr|Xn](y, ~ξn) = (fr ∗Ψ(−iq, ·))(~e, y)
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where (~e, y) = ((e1, y), · · · , (er, y)) and Ψ(λ, ~z) = ( λ2π )
r
2 exp{−λ

2‖~z‖
2
Rr}

for λ ∈ C+ or λ = −iq. Furthermore, as a function of y, T
(p)
q [Fr|Xn](·, ~ξn)

∈ A(p′)
r , where 1

p + 1
p′ = 1 if 1 < p ≤ 2 and p′ =∞ if p = 1.

Remark 2.6. An example of the orthonormal subset {e1, · · · , er} of
V ⊥ is given by [9, Remark 2.3].

Theorem 2.7. Let Xn and Fr ∈ A(p)
r (1 ≤ p ≤ ∞) be given by (1.2)

and (2.6), respectively. For wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈
Rn+1, let Fr1(y, ~ξn, ~ζn) = fr((~v, y) + (~ξn + ~ζn, (P~v)(~t))) where (~ξn +
~ζn, (P~v)(~t)) is given by (2.3) replacing ~ξn by ~ξn+~ζn. Then for a nonzero
real q, we have∫

C

∣∣∣∣Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

−(Γ(t, A))
1
2Fr1(y, ~ξn, ~ζn)

∫
Rr

Φ(1, ~z)d~z

∣∣∣∣pdwϕ(y)→ 0

for 1 ≤ p <∞ and for 1 ≤ p ≤ ∞

Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn) −→ (Γ(t, A))
1
2Fr1(y, ~ξn, ~ζn)

∫
Rr

Φ(1, ~z)d~z

as λ approaches to −iq through C+, where Γ(t, A) and Φ(1, ~z) are given
by (2.4) and (2.5), respectively.

Proof. Note that Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn) is well-defined by The-

orem 2.3. For λ ∈ C+, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1,
we have by Theorem 3.3 in [6]

Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

= (Γ(t, A))
1
2

∫
Rr
fr(TA(((~ξn + ~ζn, (P~v)(~t)) + (~v, y))A−1 − ~z))

×Φ

(
|λ|2

2Reλ
, ~z

)
d~z

where Γ(t, A) and Φ( |λ|
2

2Reλ , ~z) are given by (2.4) and (2.5), respectively.

Let κ =
∫
Rr Φ(1, ~z)d~z, Φ1(~z) = κ−1Φ(1, ~z) for ~z ∈ Rr and let ε =
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(2Reλ
|λ|2 )

1
2 > 0. Then

κ−1(Γ(t, A))−
1
2Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

= ε−rκ−1
∫
Rr
fr(TA(((~ξn + ~ζn, (P~v)(~t)) + (~v, y))A−1 − ~z))Φ

(
1,
~z

ε

)
d~z

= ε−r
(
fr(TA·) ∗ Φ1

(
·
ε

))
(((~ξn + ~ζn, (P~v)(~t)) + (~v, y))A−1).

Clearly, we have Φ(1, ·) ∈ L1(Rr) by (2.11) and
∫
Rr Φ1(~z)d~z = 1. Fur-

thermore, we have fr(TA·) ∈ Lp(Rr) (1 ≤ p ≤ ∞) by (2.12). Now we
have by Theorem 1.1, Theorem 1.18 of [18] and the change of variable
theorem∫

C

∣∣∣∣Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

−(Γ(t, A))
1
2Fr1(y, ~ξn, ~ζn)

∫
Rr

Φ(1, ~z)d~z

∣∣∣∣pdwϕ(y)

= κp(Γ(t, A))
p
2

∫
C
|κ−1(Γ(t, A))−

1
2Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

−Fr1(y, ~ξn, ~ζn)|pdwϕ(y)

= κp(Γ(t, A))
p
2

∫
C

∣∣∣∣ε−r(fr(TA·) ∗ Φ1

(
·
ε

))
(((~ξn + ~ζn, (P~v)(~t))

+(~v, y))A−1)− fr(TA((~ξn + ~ζn, (P~v)(~t)) + (~v, y))A−1)

∣∣∣∣pdwϕ(y)

≤ κp|det(A)|(Γ(t, A))
p
2

(
1

2π

) r
2
∫
Rr

∣∣∣∣ε−r(fr(TA·) ∗ Φ1

(
·
ε

))
(~u)

−fr(TA~u))

∣∣∣∣pd~u −→ 0

as λ approaches −iq through C+ if 1 ≤ p < ∞. Let 1 ≤ p ≤ ∞. By
(2.11), we have

0 ≤ ψ(~u) ≡ ess. sup{|Φ1(~z)| : ‖~z‖Rr ≥ ‖~u‖Rr}

≤ κ−1
(

1

2π

) r
2

exp

{
−Γ(t, A)

2
‖~u‖2Rr

}
so that ψ(~u) is an L1-function of ~u. Consequently, we have by Theorem
1.25 of [18]
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lim
λ→−iq

Tλ[Tλ[Fr|Xn](·, ~ξn)|Xn](y, ~ζn)

= κ(Γ(t, A))
1
2 lim
ε→0

ε−r
(
fr(TA·) ∗ Φ1

( ·
ε

))
(((~v, y)

+(~ξn + ~ζn, (P~v)(~t)))A−1)

= (Γ(t, A))
1
2Fr1(y, ~ξn, ~ζn)

∫
Rr

Φ(1, ~z)d~z

which completes the proof.

3. A time-independent conditional convolution product

In this section we evaluate the time-independent conditional convo-
lution product of the cylinder functions with the conditioning function
Xn given by (1.2).

Definition 3.1. Let Xn be given by (1.2), and F and G be defined
on C[0, t]. Define the conditional convolution product [(F ∗G)λ|Xn] of
F and G given Xn by the formula, for wϕ-a.e. y ∈ C[0, t],

[(F ∗G)λ|Xn](y, ~ξn)

=


Eanwλ

[
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣Xn

]
(~ξn), λ ∈ C+;

Eanfq
[
F

(
y + ·√

2

)
G

(
y − ·√

2

)∣∣∣∣Xn

]
(~ξn), λ = −iq; q ∈ R− {0}

if they exist for PXn-a.e. ~ξn ∈ Rn+1. If λ = −iq, we replace [(F ∗G)λ|Xn]
by [(F ∗G)q|Xn].

Theorem 3.2. Let Fr ∈ A(p1)
r , Gr ∈ A(p2)

r and fr, gr be related by
(2.6), respectively, where 1 ≤ p1, p2 ≤ ∞. Furthermore, let 1

p1
+ 1

p′1
= 1,

1
p2

+ 1
p′2

= 1 and Xn be given by (1.2). Then for λ ∈ C+, wϕ-a.e.

y ∈ C[0, t] and PXn-a.e. ~ξn ∈ Rn+1, [(Fr ∗Gr)λ|Xn](y, ~ξn) exists and it
is given by

[(Fr ∗Gr)λ|Xn](y, ~ξn) = H(λ, kfr,gr(y), ~ξn)

where kfr,gr(y)(~u) = fr(
1√
2
[(~v, y)+~u])gr(

1√
2
[(~v, y)−~u]) for ~u ∈ Rr and H

is given by (2.8). Furthermore, as functions of y, [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈
A(1)
r if either p2 ≤ p′1 or p1 ≤ p′2, [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(p2)

r if p2 ≥ p′1
and [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(p1)

r if p1 ≥ p′2.



Time-independent conditional transform and convolution 191

Proof. Using the same method as used in the proof of Theorem 3.4

of [6], for λ > 0, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn ∈ Rn+1,

[(Fr ∗Gr)λ|Xn](y, ~ξn)

= (Γ(t, A))
1
2

∫
Rr
fr

(
1√
2

[(~v, y) + (~ξn, (P~v)(~t)) + TA~z]

)
×gr

(
1√
2

[(~v, y)− (~ξn, (P~v)(~t))− TA~z]
)

Φ(λ, ~z)d~z

where (~ξn, (P~v)(~t)), Γ(t, A) and Φ(λ, ~z) are given by (2.3), (2.4) and
(2.5), respectively. Now, let λ ∈ C+ and for ~u ∈ Rr, let

γ1(~u) = (Γ(t, A))
1
2

∫
Rr
fr

(
1√
2

[~u+ (~ξn, (P~v)(~t)) + TA~z]

)
(3.1)

×gr
(

1√
2

[~u− (~ξn, (P~v)(~t))− TA~z]
)

Φ(λ, ~z)d~z

formally and suppose that p2 ≤ p′1. Since 0 < Γ(t, A) ≤ 1, we have by
the change of variable theorem∫

Rr
|γ1(~u)|d~u ≤ |det(A−1)|

∫
Rr
|fr1(~p)|(|gr1| ∗ |Φ1|)(~p)d~p

where fr1(~p) = fr(~p+ 1√
2
(~ξn, (P~v)(~t))), gr1(~p) = gr(~p− 1√

2
(~ξn, (P~v)(~t)))

and Φ1(~p) = Φ(λ, 1√
2
~pA−1). Now let 1

p2
+ 1

q = 1
p′1

+ 1 with 1 ≤ q ≤ ∞.

By the change of variable theorem, we have for 1 ≤ q <∞∫
Rr

|Φ1(~p)|qd~p ≤ |det(A)|
(
|λ|
2π

) qr
2
∫
Rr

exp

{
−qΓ(t, A)Reλ

4
‖~z‖2Rr

}
d~z <∞

by (2.10) and (2.11) so that Φ1 ∈ Lq(Rr) for 1 ≤ q ≤ ∞. Now by
the general form of Young’s inequality [10, Theorem 8.9] and Hölder’s
inequality,∫

Rr
|γ1(~u)|d~u ≤ |det(A−1)|‖fr1‖p1‖gr1‖p2‖Φ1‖q <∞

which shows that γ1 ∈ L1(Rr) and hence [(Fr ∗ Gr)λ|Xn](·, ~ξn) ∈ A(1)
r .

Similarly, [(Fr ∗ Gr)λ|Xn](·, ~ξn) ∈ A(1)
r if p1 ≤ p′2. Suppose that p′1 ≤

p2. Then, by Hölder’s inequality, Young’s inequality and the change of
variable theorem, we can prove∫

Rr

|γ1(~u)|p2d~u ≤ |det(A)|[|det(A−1)|2 r
2 ]

p2
p1

+1‖fr‖p2p1‖Φ(λ, ·)‖p2p′1‖gr‖
p2
p2 <∞
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if 1 < p′1 ≤ p2 <∞ and∫
Rr
|γ1(~u)|p2d~u ≤ 2

r
2 ‖fr‖p2∞‖Φ(λ, ·)‖p21 ‖gr‖

p2
p2 <∞

if 1 = p′1 ≤ p2 <∞. Furthermore, we have for ~u ∈ Rr

|γ1(~u)| ≤ ‖gr‖∞[|det(A−1)|2
r
2 ]

1
p1 ‖fr‖p1‖Φ(λ, ·)‖p′1

if 1 < p′1 ≤ p2 =∞ and

|γ1(~u)| ≤ ‖gr‖∞‖fr‖∞‖Φ(λ, ·)‖1
if 1 = p′1 and p2 = ∞. Now we have γ1 ∈ Lp2(Rr) so that [(Fr ∗
Gr)λ|Xn](·, ~ξn) ∈ A(p2)

r . Similarly, we can prove [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈
A(p1)
r if p1 ≥ p′2. Note that the existence of [(Fr ∗ Gr)λ|Xn] follows

from the dominated convergence theorem and Morera’s theorem. The
theorem now follows.

Theorem 3.3. Let Xn be given by (1.2) and q be a nonzero real

number. Then for λ ∈ C+ or λ = −iq, and ~ξn ∈ Rn+1, we have the
followings:

(1) if Fr ∈ A(1)
r and Gr ∈ A(1)

r , then [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(1)
r ,

(2) if Fr ∈ A(2)
r and Gr ∈ A(2)

r , then [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(∞)
r ,

(3) if Fr ∈ A(1)
r and Gr ∈ A(2)

r , then [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(2)
r ,

(4) if Fr ∈ A(1)
r and Gr ∈ A(1)

r ∩ A(2)
r , then [(Fr ∗ Gr)λ|Xn](·, ~ξn) ∈

A
(1)
r ∩A(2)

r , and

(5) if Fr ∈ A(1)
r and Gr ∈ A(∞)

r , then [(Fr ∗Gr)λ|Xn](·, ~ξn) ∈ A(∞)
r .

Proof. Let Fr, Gr and fr, gr be related by (2.6), respectively.
(1) The result follows from Theorem 3.4 of [6].
(2) For λ ∈ C+ or λ = −iq let γ1 be given by (3.1). Then it is not

difficult to show that for ~u ∈ Rr

|γ1(~u)| ≤ 2
r
2 |det(A−1)|‖Φ(λ, ·)‖∞‖fr‖2‖gr‖2 <∞

by Hölder’s inequality and the change of variable theorem. By the domi-
nated convergence theorem, [(Fr ∗Gr)q|Xn] exists and the result follows.

(3) For λ ∈ C+ or λ = −iq let γ1 be given by (3.1). Then we have by
the change of variable theorem and Hölder’s inequality∫

Rr
|γ1(~u)|2d~u ≤ 2

r
2 |det(A−1)|2‖Φ(λ, ·)‖2∞‖fr‖21‖gr‖22 <∞

so that the result follows.
(4) The result follows from (1) and (3).
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(5) It follows immediately from Fr ∈ A(1)
r and the dominated conver-

gence theorem.

Now applying the same method as used in the proof of Theorem 4.2
of [6], we have the following theorem from Theorems 2.3 and 3.2.

Theorem 3.4. Let Xn be given by (1.2) and Fr, Gr ∈ ∪1≤p≤∞A(p)
r

be given by (2.6). Then for λ ∈ C+, wϕ-a.e. y ∈ C[0, t] and PXn-a.e.
~ξn, ~ζn ∈ Rn+1, we have

Tλ[[(Fr ∗Gr)λ|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
Tλ[Fr|Xn]

(
1√
2
y,

1√
2

(~ζn + ~ξn)

)][
Tλ[Gr|Xn]

(
1√
2
y,

1√
2

(~ζn − ~ξn)

)]
.

We have the following relationships between the conditional Fourier-
Feynman transform and the conditional convolution product from The-
orems 2.5, 3.3, 3.4 and Theorem 4.2 of [6].

Theorem 3.5. Let Xn be given by (1.2) and q be a nonzero real.
Then we have the followings:

(1) if Fr, Gr ∈ A
(1)
r are given by (2.6), then we have for wϕ-a.e.

y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1,

T (1)
q [[(Fr ∗Gr)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
T (1)
q [Fr|Xn]

(
1√
2
y,

1√
2

(~ζn + ~ξn)

)][
T (1)
q [Gr|Xn]

(
1√
2
y,

1√
2

(~ζn − ~ξn)

)]
,

(2) if Fr ∈ A(1)
r and Gr ∈ A(2)

r are given by (2.6) where {v1, · · · , vr} ⊂
V ⊥, then we have for wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1,

T (2)
q [[(Fr ∗Gr)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
T (1)
q [Fr|Xn]

(
1√
2
y,

1√
2

(~ζn + ~ξn)

)][
T (2)
q [Gr|Xn]

(
1√
2
y,

1√
2

(~ζn − ~ξn)

)]
.

4. Evaluation formulas for bounded cylinder functions

Let M̂(Rr) be the set of all functions φ on Rr defined by

φ(~u) =

∫
Rr

exp{i〈~u, ~z〉Rr}dρ(~z),(4.1)

where ρ is a complex Borel measure of bounded variation over Rr. For
wϕ-a.e. x ∈ C[0, t], let Φ2 be given by

Φ2(x) = φ(~v, x)(4.2)
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where φ is given by (4.1).
Now we have the following theorem.

Theorem 4.1. Let 1 ≤ p ≤ ∞, AT be the transpose of A and
TAT ~u = ~uAT for ~u ∈ Rr. Let Xn and Φ2 be given by (1.2) and (4.2),

respectively. Then for λ ∈ C+, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn ∈
Rn+1, Tλ[Φ2|Xn](y, ~ξn) exists and it is given by

Tλ[Φ2|Xn](y, ~ξn) =

∫
Rr

exp

{
i〈(~v, y), ~u〉Rr + i〈(~ξn, (P~v)(~t)), ~u〉Rr

− 1

2λ
[‖TAT ~u‖2Rr + (t− tn)〈(P~v)(t), ~u〉2Rr ]

}
dρ(~u)

(4.3)

where (P~v)(t) and (~ξn, (P~v)(~t)) are given by (2.2) and (2.3), respec-

tively. For nonzero real q, wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn ∈ Rn+1,

T
(p)
q [F |Xn](y, ~ξn) also exists and it is given by (4.3) replacing λ by −iq.

Furthermore, as a function of y, T
(p)
q [Φ2|Xn](·, ~ξn) ∈ A(∞)

r .

Proof. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,

ξn+1). For λ > 0, wϕ-a.e. y ∈ C[0, t] and ~ξn ∈ Rn+1, we have by
Theorem 4.1 of [5]

Kλ
Φ2

(y, ~ξn)

=

[
λ

2π(t− tn)

] 1
2
∫
R

∫
Rr

exp

{
i〈(~v, y) + (~v, [~ξn+1]), ~u〉Rr − 1

2λ
‖TA~u‖2Rr

−λ(ξn+1 − ξn)2

2(t− tn)

}
dρ(~u)dξn+1

=

[
λ

2π(t− tn)

] 1
2
∫
R

∫
Rr

exp

{
i〈(~v, y) + (~ξn, (P~v)(~t)), ~u〉Rr + i(ξn+1 − ξn)

×〈(P~v)(t), ~u〉Rr − 1

2λ
‖TA~u‖2Rr −

λ(ξn+1 − ξn)2

2(t− tn)

}
dρ(~u)dξn+1

=

∫
Rr

exp

{
i〈(~v, y) + (~ξn, (P~v)(~t)), ~u〉Rr − 1

2λ
[‖TA~u‖2Rr + (t− tn)

×〈(P~v)(t), ~u〉2Rr ]

}
dρ(~u)

where the last equality follows from the well known integration formula∫
R

exp{−au2 + ibu}du =

(
π

a

) 1
2

exp

{
− b

2

4a

}
(4.4)

for a ∈ C+ and any real b. By the analytic continuation, we have (4.3)
for λ ∈ C+. For p = 1, the final result follows from the dominated
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convergence theorem. Now let 1 < p ≤ ∞ and 1
p + 1

p′ = 1. Further, let

T
(p)
q [Φ2|Xn](y, ~ξn) be formally given by (4.3) replacing λ by −iq. Then

we have

|Tλ[Φ2|Xn](y, ~ξn)− T (p)
q [Φ2|Xn](y, ~ξn)|p′ ≤ (2‖ρ‖)p′

so that by the dominated convergence theorem∫
C
|Tλ[Φ2|Xn](y, ~ξn)− T (p)

q [Φ2|Xn](y, ~ξn)|p′dwϕ(y)

converges to 0 as λ approaches to −iq through C+, which completes the
proof.

Theorem 4.2. Let 1 ≤ p ≤ ∞. Let Xn and Φ2 be given by (1.2) and

(4.2), respectively. For wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1,

let Φ3(y, ~ξn, ~ζn) = φ((~v, y) + (~ξn + ~ζn, (P~v)(~t))) where (~ξn + ~ζn, (P~v)(~t))

is given by (2.3) replacing ~ξn by ~ξn + ~ζn. Then for a nonzero real q, we
have

‖Tλ[Tλ[Φ2|Xn](·, ~ξn)|Xn](·, ~ζn)− Φ3(·, ~ξn, ~ζn)‖p −→ 0(4.5)

as λ approaches to −iq through C+.

Proof. By Theorem 4.1, Tλ[Tλ[Φ2|Xn](·, ~ξn)|Xn](y, ~ζn) is well-defined
so that we have for λ ∈ C+

Tλ[Tλ[Φ2|Xn](·, ~ξn)|Xn](y, ~ζn)

=

∫
Rr

exp

{
i〈(~v, y) + (~ζn, (P~v)(~t)), ~u〉Rr −

1

2λ
[‖TAT ~u‖2Rr + (t− tn)

×〈(P~v)(t), ~u〉2Rr ] + i〈(~ξn, (P~v)(~t)), ~u〉Rr −
1

2λ
[‖TAT ~u‖2Rr + (t− tn)

×〈(P~v)(t), ~u〉2Rr ]
}
dρ(~u)

=

∫
Rr

exp

{
i〈(~v, y) + (~ξn + ~ζn, (P~v)(~t)), ~u〉Rr −

Reλ

|λ|2
[‖TAT ~u‖2Rr

+(t− tn)〈(P~v)(t), ~u〉2Rr ]
}
dρ(~u).

Then we have
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|Tλ[Tλ[Φ2|Xn](·, ~ξn)|Xn](y, ~ζn)− Φ3(y, ~ξn, ~ζn)|

=

∣∣∣∣∫
Rr

[
exp

{
i〈(~v, y) + (~ξn + ~ζn, (P~v)(~t)), ~u〉Rr − Reλ

|λ|2
[‖TAT ~u‖2Rr + (t−

tn)〈(P~v)(t), ~u〉2Rr ]

}
− exp{i〈(~v, y) + (~ξn + ~ζn, (P~v)(~t)), ~u〉Rr}

]
dρ(~u)

∣∣∣∣
≤

∫
Rr

∣∣∣∣exp

{
−Reλ

|λ|2
[‖TAT ~u‖2Rr + (t− tn)〈(P~v)(t), ~u〉2Rr ]

}
− 1

∣∣∣∣d|ρ|(~u)

so that the inequality is independent of y, and we have for 1 ≤ p <∞∫
C

|Tλ[Tλ[Φ2|Xn](·, ~ξn)|Xn](y, ~ζn)− Φ3(y, ~ξn, ~ζn)|pdwϕ(y)

≤
[∫

Rr

∣∣∣∣exp

{
−Reλ

|λ|2
[‖TAT ~u‖2Rr + (t− tn)〈(P~v)(t), ~u〉2Rr ]

}
− 1

∣∣∣∣d|ρ|(~u)

]p
.

Now we have (4.5) for 1 ≤ p ≤ ∞ as λ approaches to −iq through C+

by the dominated convergence theorem, which completes the proof.

Theorem 4.3. Let φ4, φ5 and ρ4, ρ5 be related by (4.1), respectively,
and let Φ4(x) = φ4(~v, x) and Φ5(x) = φ5(~v, x) for wϕ-a.e. x ∈ C[0, t].
Furthermore, let Xn be given by (1.2). Then for λ ∈ C+, wϕ-a.e. y ∈
C[0, t] and PXn-a.e. ~ξn ∈ Rn+1, [(Φ4 ∗ Φ5)λ|Xn](y, ~ξn) exists and it is
given by

[(Φ4 ∗ Φ5)λ|Xn](y, ~ξn)

=

∫
Rr

∫
Rr

exp

{
i√
2

[〈(~v, y), ~u+ ~w〉Rr + 〈(~ξn, (P~v)(~t)), ~u− ~w〉Rr ]

− 1

4λ
[‖TAT (~u− ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u− ~w〉2Rr ]

}
dρ4(~u)dρ5(~w)

where (P~v)(t) and (~ξn, (P~v)(~t)) are given by (2.2) and (2.3), respec-
tively, and TAT is as given in Theorem 4.1. For a nonzero real q,

[(Φ4 ∗Φ5)q|Xn](y, ~ξn) is given by the right hand side of the above equal-
ity where λ is replaced by −iq. Furthermore, as a function of y, [(Φ4 ∗
Φ5)q|Xn](·, ~ξn) ∈ A(∞)

r .

Proof. For ~ξn = (ξ0, ξ1, · · · , ξn) ∈ Rn+1, let ~ξn+1 = (ξ0, ξ1, · · · , ξn,

ξn+1). For λ > 0, wϕ-a.e. y ∈ C[0, t] and ~ξn ∈ Rn+1, we have by
Theorem 4.3 of [5] and Fubini’s theorem
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[(Φ4 ∗ Φ5)λ|Xn](y, ~ξn)

=

[
λ

2π(t− tn)

] 1
2
∫
R

∫
Rr

∫
Rr

exp

{
i√
2

[〈(~v, y), ~u+ ~w〉Rr + 〈(~v, [~ξn+1]), ~u

−~w〉Rr ]− 1

4λ
‖TAT (~u− ~w)‖2Rr −

λ(ξn+1 − ξn)2

2(t− tn)

}
dρ4(~u)dρ5(~w)dξn+1

=

[
λ

2π(t− tn)

] 1
2
∫
Rr

∫
Rr

∫
R

exp

{
i√
2

[〈(~v, y), ~u+ ~w〉Rr + 〈(~ξn, (P~v)(~t)),

~u− ~w〉Rr ] +
i√
2
〈(P~v)(t), ~u− ~w〉Rr (ξn+1 − ξn)− 1

4λ
‖TAT (~u− ~w)‖2Rr

−λ(ξn+1 − ξn)2

2(t− tn)

}
dξn+1dρ4(~u)dρ5(~w)

=

∫
Rr

∫
Rr

exp

{
i√
2

[〈(~v, y), ~u+ ~w〉Rr + 〈(~ξn, (P~v)(~t)), ~u− ~w〉Rr ]

− 1

4λ
[‖TAT (~u− ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u− ~w〉2Rr ]

}
dρ4(~u)dρ5(~w)

where the last equality follows from (4.4). By the dominated convergence
theorem and Morera’s theorem, we have the results.

Now, we have the final theorem of our work.

Theorem 4.4. Let Xn be given by (1.2), q be a nonzero real and
1 ≤ p ≤ ∞. Furthermore, let Φ4 and Φ5 be as given in Theorem 4.3.

Then we have for wϕ-a.e. y ∈ C[0, t] and PXn-a.e. ~ξn, ~ζn ∈ Rn+1

T (p)
q [[(Φ4 ∗ Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
T (p)
q [Φ4|Xn]

(
1√
2
y,

1√
2

(~ζn + ~ξn)

)][
T (p)
q [Φ5|Xn]

(
1√
2
y,

1√
2

(~ζn − ~ξn)

)]
.

Proof. For ~ζn = (ζ0, ζ1, · · · , ζn) ∈ Rn+1, let ~ζn+1 = (ζ0, ζ1, · · · , ζn,

ζn+1). For λ > 0, wϕ-a.e. y ∈ C[0, t] and ~ζn ∈ Rn+1, we have by
Theorem 4.3

Tλ[[(Φ4 ∗ Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn)

=

[
λ

2π(t− tn)

] 1
2
(
λ

2π

) r
2
∫
Rr

∫
Rr

∫
R

∫
Rr

exp

{
i√
2

[〈(~v, y) + (~v, [~ζn+1])

+TA~z, ~u+ ~w〉Rr + 〈(~ξn, (P~v)(~t)), ~u− ~w〉Rr ] +
1

4qi
[‖TAT (~u− ~w)‖2Rr
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+(t− tn)〈(P~v)(t), ~u− ~w〉2Rr ]− λ

2
‖~z‖2Rr −

λ(ζn+1 − ζn)2

2(t− tn)

}
d~zdζn+1

dρ4(~u)dρ5(~w)

=

∫
Rr

∫
Rr

exp

{
i√
2

[〈(~v, y) + (~ζn + ~ξn, (P~v)(~t)), ~u〉Rr + 〈(~v, y) + (~ζn − ~ξn,

(P~v)(~t)), ~w〉Rr ] +
1

4qi
[‖TAT (~u− ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u− ~w〉2Rr ]−

1

4λ
[‖TAT (~u+ ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u+ ~w〉2Rr ]

}
dρ4(~u)dρ5(~w)

by using the same methods as used in the proof of Theorem 4.1 and

Theorem 4.1 of [5]. Let T
(p)
q [[(Φ4 ∗Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn) be the right

hand side of the last equality, where λ is replaced by −iq. The existence

of T
(1)
q [[(Φ4 ∗Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn) follows from the dominated con-

vergence theorem. Now let 1 < p ≤ ∞ and 1
p + 1

p′ = 1. Then we have

by the dominated convergence theorem∫
C
|Tλ[[(Φ4 ∗ Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn)

−T (p)
q [[(Φ4 ∗ Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn)|p′dwϕ(y)

≤
[∫

Rr

∫
Rr

∣∣∣∣exp

{
− 1

4λ
[‖TAT (~u+ ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u+ ~w〉2Rr ]

}
− exp

{
1

4qi
‖TAT (~u+ ~w)‖2Rr + (t− tn)〈(P~v)(t), ~u+ ~w〉2Rr ]

}∣∣∣∣d|ρ4|(~u)

d|ρ5|(~w)

]p′
→ 0

as λ approaches to −iq through C+, which shows the existence of T
(p)
q [

[(Φ4∗Φ5)q|Xn](·, ~ξn)|Xn](y, ~ζn). Now the equality in the theorem follows
from Theorems 3.4, 4.1 and 4.3.

Remark 4.5. Without using Theorem 3.4, we can prove Theorem
4.4 with aids of Theorems 4.1 and 4.3.
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