CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONDITIONAL CONVOLUTION PRODUCTS

  • Park, Chull (Department of Mathematics and Statistics, Miami University) ;
  • David Skoug (Department of Mathematics and Statistics, University of Nebraska)
  • Published : 2001.01.01

Abstract

In this paper we define the concept of a conditional Fourier-Feynman transform and a conditional convolution product and obtain several interesting relationships between them. In particular we show that the conditional transform of the conditional convolution product is the product of conditional transforms, and that the conditional convolution product of conditional transforms is the conditional transform of the product of the functionals.

Keywords

References

  1. A Functional Transform for Feynman Integrals Similar to the Fourier Transform M.D.Brue
  2. Michigan Math.J. v.23 An L₂Analytic Fourier-Feynman Transform R.H.Cameron;D.A.Storvick
  3. Lecture Notes in Math. v.798 Some Banach Algebras of Analytic Feynman Integrable Functionals, Analytic Functions (Kozubnik, 1979)
  4. Mem.Amer.Math.Soc. v.46 A Simple Definition of the Feynman Integral, with applications
  5. J.Korean Math.Soc. v.19 Scale-invariant Measurabillity in Yeh-Wiener Space K.S.Chang
  6. J.Korean Math.Soc. v.24 Functions in the Banach Algebra S(v) K.S.Chang;G.W.Johnson;D.L.Skoug
  7. J.Korean Math.Soc. v.30 A Class of Conditional Wiener Integrals S.J.Chang;D.M.Chung
  8. Michigan Math.J. v.40 Generalized Feynman Integrals via Conditional Feynman Integrals D.M.Chung;C.Park;D.L.Skoug
  9. SIAM J.Math.Anal. v.20 Conditional Analytic Feynman Integrals and a Related Schrodinger Integral Equation D.M.Chung;D.L.Skoug
  10. Trans.Amer.Math.Soc. v.347 Analytic Fourier-Feynman Transforms and Convolution T.Huffman;C.Park;D.Skoug
  11. Rocky Mountain Math.J. v.27 Convolution and Fourier-Feynman Transforms
  12. Michigan Math.J. v.43 Convolution and Fourier-Feynman Transforms of Functionals Involving Multiple Integrals
  13. Internat.J.Math. and Math.Sci. v.20 Generalized Transforms and Convolutions
  14. Michigan Math.J. v.26 An Lp Analytic Fourier-Feynman Transform G.W.Johnson;D.L.Skoug
  15. Pacific J.Math. v.83 Scale-invariant Measurability in Wiener Space
  16. Pacific J.Math. v.105 Notes on the Feynman Integral, Ⅲ
  17. Pacific J.Math. v.135 A Simple Fomula for Conditional Wiener Integrals with Applications C.Park;D.Skoug
  18. Journal of Integral Equations and Applications v.3 A Kac-Feynman Integral Equation for Conditional Wiener Integrals
  19. Nagoya Math.J. v.110 The Feynman Integral of Quadratic Potentials Depending on n time Parameters
  20. Adv.in Math. v.4 Transformations in Wiener Space and Squares of Quantum Fields I.Segal
  21. Proceedings of the International Conference The Analytic Feynman Integral, Dirichlet Forms and Stochastic Processes D.A.Storvick
  22. Pacific J.Math. v.59 Inversion of Conditional Wiener Integrals J.Yeh