DOI QR코드

DOI QR Code

CONDITIONAL FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTIONS OF UNBOUNDED FUNCTIONS ON A GENERALIZED WIENER SPACE

  • Received : 2012.12.12
  • Published : 2013.09.01

Abstract

Let C[0, $t$] denote the function space of real-valued continuous paths on [0, $t$]. Define $X_n\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+1}$ and $X_{n+1}\;:\;C[0,t]{\rightarrow}\mathbb{R}^{n+2}$ by $X_n(x)=(x(t_0),x(t_1),{\ldots},x(t_n))$ and $X_{n+1}(x)=(x(t_0),x(t_1),{\ldots},x(t_n),x(t_{n+1}))$, respectively, where $0=t_0 <; t_1 <{\ldots} < t_n < t_{n+1}=t$. In the present paper, using simple formulas for the conditional expectations with the conditioning functions $X_n$ and $X_{n+1}$, we evaluate the $L_p(1{\leq}p{\leq}{\infty})$-analytic conditional Fourier-Feynman transforms and the conditional convolution products of the functions, which have the form $fr((v_1,x),{\ldots},(v_r,x)){\int}_{L_2}_{[0,t]}\exp\{i(v,x)\}d{\sigma}(v)$ for $x{\in}C[0,t]$, where $\{v_1,{\ldots},v_r\}$ is an orthonormal subset of $L_2[0,t]$, $f_r{\in}L_p(\mathbb{R}^r)$, and ${\sigma}$ is the complex Borel measure of bounded variation on $L_2[0,t]$. We then investigate the inverse conditional Fourier-Feynman transforms of the function and prove that the analytic conditional Fourier-Feynman transforms of the conditional convolution products for the functions can be expressed by the products of the analytic conditional Fourier-Feynman transform of each function.

Keywords

References

  1. M. D. Brue, A functional transform for Feynman integrals similar to the Fourier transform, Thesis, Univ. of Minnesota, Minneapolis, 1972.
  2. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Mathematics 798, Springer, Berlin-New York, 1980.
  3. K. S. Chang, D. H. Cho, B. S. Kim, T. S. Song, and I. Yoo, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space, Integral Transforms Spec. Funct. 14 (2003), no. 3, 217-235. https://doi.org/10.1080/1065246031000081652
  4. S. J. Chang and D. M. Chung, A class of conditional Wiener integrals, J. Korean Math. Soc. 30 (1993), no. 1, 161-172.
  5. S. J. Chang and D. Skoug, The effect of drift on conditional Fourier-Feynman trans- forms and conditional convolution products, Int. J. Appl. Math. 2 (2000), no. 4, 505-527.
  6. S. J. Chang and D. Skoug, The effect of drift on the Fourier-Feynman transform, the convolution product and the first variation, Panamer. Math. J. 10 (2000), no. 2, 25-38.
  7. D. H. Cho, A time-independent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Honam Math. J. (2013), submitted. https://doi.org/10.5831/HMJ.2013.35.2.179
  8. D. H. Cho, A time-dependent conditional Fourier-Feynman transform and convolution product on an analogue of Wiener space, Houston J. Math. (2012), submitted.
  9. D. H. Cho, Conditional integral transforms and convolutions of bounded functions on an analogue of Wiener space, J. Chungcheong Math. Soc. (2012), to appear.
  10. D. H. Cho, Conditional integral transforms and conditional convolution products on a function space, Integral Transforms Spec. Funct. 23 (2012), no. 6, 405-420. https://doi.org/10.1080/10652469.2011.596482
  11. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications II, Czechoslovak Math. J. 59 (2009), no. 2, 431-452. https://doi.org/10.1007/s10587-009-0030-6
  12. D. H. Cho, A simple formula for an analogue of conditional Wiener integrals and its applications, Trans. Amer. Math. Soc. 360 (2008), no. 7, 3795-3811. https://doi.org/10.1090/S0002-9947-08-04380-8
  13. D. H. Cho, Conditional Fourier-Feynman transform and convolution product over Wiener paths in abstract Wiener space: an $L_p$ theory, J. Korean Math. Soc. 41 (2004), no. 2, 265-294. https://doi.org/10.4134/JKMS.2004.41.2.265
  14. D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438. https://doi.org/10.1016/j.jmaa.2009.05.023
  15. T. Huffman, C. Park, and D. Skoug, Convolutions and Fourier-Feynman transforms of functionals involving multiple integrals, Michigan Math. J. 43 (1996), no. 2, 247-261. https://doi.org/10.1307/mmj/1029005461
  16. M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819. https://doi.org/10.4134/JKMS.2002.39.5.801
  17. G. W. Johnson and D. L. Skoug, The Cameron-Storvick function space integral: an L $(L_p,L_p{\prime})$ theory, Nagoya Math. J. 60 (1976), 93-137.
  18. M. J. Kim, Conditional Fourier-Feynman transform and convolution product on a func- tion space, Int. J. Math. Anal. 3 (2009), no. 10, 457-471.
  19. B. J. Kim, B. S. Kim, and D. Skoug, Conditional integral transforms, conditional convolution products and first variations, Panamer. Math. J. 14 (2004), no. 3, 27-47.
  20. C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38 (2001), no. 1, 61-76.
  21. C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), no. 2, 381-394. https://doi.org/10.2140/pjm.1988.135.381
  22. K. S. Ryu and M. K. Im, A measure-valued analogue of Wiener measure and the measure-valued Feynman-Kac formula, Trans. Amer. Math. Soc. 354 (2002), no. 12, 4921-4951. https://doi.org/10.1090/S0002-9947-02-03077-5
  23. K. S. Ryu, M. K. Im, and K. S. Choi, Survey of the theories for analogue of Wiener measure space, Interdiscip. Inform. Sci. 15 (2009), no. 3, 319-337.

Cited by

  1. A TRANSLATION THEOREM FOR THE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE vol.53, pp.5, 2016, https://doi.org/10.4134/JKMS.j150317