• Title/Summary/Keyword: amorphous powder

Search Result 397, Processing Time 0.029 seconds

Mechanochemical Synthesis of LaNiO3 Crystalline Phase from Mixture of La2O3sub> and NiO (La2O3의 메카노케미컬 합성에 의한 LaNiO3결정상 생성)

  • 김대영;김강언;이명교;정수태
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.681-687
    • /
    • 2003
  • The syntheses of LaNiO$_3$Perovskite crystalline phase from mixtures of La$_2$O$_3$and NiO via it mechanochemical(used planetary mill) and a wet ball mill process were investigated. A single and stable LaNiO$_3$perovskite crystalline phase was successfully prepared by using a heat free mechanochemical process which produced a fine amorphous powder, while that phase was not formed in a wet ball mill process which needed heat treatment ranging from 500 to 150$0^{\circ}C$ and produced a coarse powder. It was shown that the LaNiO$_3$ceramics made of the mechanochemically synthesized powder possesed a good metallic characteristic.

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan;An, Sung Yong
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.138-147
    • /
    • 2015
  • The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Preparation of $TiO_2$ nanopowder using titanium tetra-isopropoxide and effect of pH (Titanium tetra-isopropoxide를 이용한 $TiO_2$ Nanopowder 제초와 pH의 영향)

  • 임창성;오원춘;류정호;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • $TiO_2$ nanopowder was successfully prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCI and NH40H. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetraisopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4$OH, the morphology of the $TiO_2$ powder exhibited powder form. For the HCI catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of the catalysts.

Synthesis of SiC Nano-powder from TEOS by RF Induction Thermal Plasma (RF 열플라즈마를 이용한 TEOS로 부터의 SiC 나노분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Kim, Ji-Ho;Byeon, Myeong-Seob;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • Silicon carbide (SiC) has recently drawn an enormous industrial interest because of its useful mechanical properties such as thermal resistance, abrasion resistance and thermal conductivity at high temperature. RF Thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) has been utilized for synthesis of high purity SiC powder from cheap inorganic solution (Tetraethyl Orthosilicate, TEOS). It is found that the powders by thermal plasma consist of SiC with free carbon and amorphous silica ($SiO_2$) and, by thermal treatment and HF treatment, the impurities are driven off resulting high purity SiC nano-powder. The synthesized SiC powder lies below 30 nm and its properties such microstructure, phase composition, specific surface area and free carbon content have been characterized by X-ay diffraction (XRD), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) and Brunauer-Emmett-Teller (BET).

Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Song, Ju-Suck;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2016
  • Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

Synthesis of Silicon Carbide Nano-Powder from a Silicon-Organic Precursor by RF Inductive Thermal Plasma (RF 유도 열플라즈마를 이용한 유기 용매로 부터의 탄화규소 나노 분말 합성)

  • Ko, Sang-Min;Koo, Sang-Man;Kim, Jin-Ho;Cho, Woo-Seok;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.523-527
    • /
    • 2012
  • Silicon carbide (SiC) has recently drawn an enormous amount of industrial interest due to its useful mechanical properties, such as its thermal resistance, abrasion resistance and thermal conductivity at high temperatures. In this study, RF thermal plasma (PL-35 Induction Plasma, Tekna CO., Canada) was utilized for the synthesis of high-purity SiC powder from an organic precursor (hexamethyldisilazane, vinyltrimethoxysilane). It was found that the SiC powders obtained by the RF thermal plasma treatment included free carbon and amorphous silica ($SiO_2$). The SiC powders were further purified by a thermal treatment and a HF treatment, resulting in high-purity SiC nano-powder. The particle diameter of the synthesized SiC powder was less than 30 nm. Detailed properties of the microstructure, phase composition, and free carbon content were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), a thermogravimetric (TG) analysis, according to the and Brunauer-Emmett-Teller (BET) specific surface area from N2 isotherms at 77 K.

The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel (산화물 혼합상이 페라이트계 P/M스테인리스강의 고온산화 및 전기저항 안정성에 미치는 영향)

  • Park, Jin-Woo;Ko, Byung-Hyun;Jung, Woo-young;Park, Dong-Kyu;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.240-246
    • /
    • 2016
  • In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at $950^{\circ}C$ up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form $Al_2O_3$ and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

Optimization of slurry for manufacturing spray-dried aluminum silicate granular powder (분무 건조 알루미늄 실리케이트 과립 분말 제조를 위한 슬러리 최적화 연구)

  • Kim, Hyeonjin;Sun, Woogyeong;Jo, Hyesoo;Yoon, Seog-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.6
    • /
    • pp.264-269
    • /
    • 2021
  • In this study, amorphous aluminum silicate powder was prepared using co-precipitation method, and the influence of spray-dried aluminum silicate granular powder was analyzed and optimized by controlling the amount of aluminum silicate powder and dispersant added to the slurry. As a result, granular powder was optimally produced under the conditions of powder content of aluminum silicate slurry of 27.5 wt% or less, dispersant addition amount of 0.8 wt% or more, pH 6~9. An average particle size of granular powder showed approximately 14 ㎛ at the powder contents of 20 and 22.5 wt% of the slurry, and approximately 19 ㎛ at the powder contents of 25 and 27.5 wt% of the slurry.

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.