DOI QR코드

DOI QR Code

The Effect of Oxide Compound on Electrical Resistivity and Oxidation Stability in High-temperature for Ferritic P/M Stainless Steel

산화물 혼합상이 페라이트계 P/M스테인리스강의 고온산화 및 전기저항 안정성에 미치는 영향

  • Park, Jin-Woo (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Ko, Byung-Hyun (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Jung, Woo-young (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University) ;
  • Park, Dong-Kyu (LINC, Gyeongsang National University) ;
  • Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University)
  • 박진우 (경상대학교 나노.신소재 공학부) ;
  • 고병현 (경상대학교 나노.신소재 공학부) ;
  • 정우영 (경상대학교 나노.신소재 공학부) ;
  • 박동규 (경상대학교 링크 사업단) ;
  • 안인섭 (경상대학교 나노.신소재 공학부)
  • Received : 2016.05.02
  • Accepted : 2016.06.07
  • Published : 2016.06.28

Abstract

In order to improve the high-temperature oxidation stability, sintered 434L stainless steel is studied, focusing on the effect of the addition of metallic oxides to form stable oxide films on the inner particle surface. The green compacts of Fecralloy powder or amorphous silica are added on STS434L and oxidized at $950^{\circ}C$ up to 210 h. The weight change ratio of 434L with amorphous silica is higher than that of 434L mixed with Fecralloy, and the weight increase follows a parabolic law, which implies that the oxide film grows according to oxide diffusion through the densely formed oxide film. In the case of 434L mixed with Fecralloy, the elements in the matrix diffuse through the grain boundaries and form $Al_2O_3$ and Fe-Cr oxides. Stable high temperature corrosion resistance and electrical resistivity are obtained for STS434L mixed with Fecralloy.

Keywords

References

  1. W. Howard and J. Pickering: J. Electrochem. Soc., 119 (1972) 641. https://doi.org/10.1149/1.2404277
  2. F. H. Stott and F. I. Wei: Oxid. Met., 31 (1989) 369. https://doi.org/10.1007/BF00666463
  3. A. V. C. Sobral, M. P. Hierro, F. J. Prez, W. Ristow Jr. and C. V. Franco: Mater. Corros., 51(2000) 791. https://doi.org/10.1002/1521-4176(200011)51:11<791::AID-MACO791>3.0.CO;2-1
  4. I. S. Lee: J. Korean Inst. Met. Mater., 47 (2009) 716 (Korean).
  5. R. K. Wild: Corros. Sci., 17 (1977) 87. https://doi.org/10.1016/0010-938X(77)90011-7
  6. J. T. Bittel, L. H. Sjodahl and J. F. White: Corros. Sci., 25 (1969) 7. https://doi.org/10.5006/0010-9312-25.1.7
  7. S. C. Kuiry, S. Seal, S. K. Bose and S. K. Roy: ISIJ Int., 34 (1994) 599. https://doi.org/10.2355/isijinternational.34.599
  8. R. L. Klueh, P. J. Maziasz, I. S. Kim, L. Heatherly, D. T. Hoelzr, N. Hashimoto, E. A. Kenik and K. Miyahara: J. Nucl. Mater., 773 (2002) 307.
  9. I.-S. Kim, C.-Y. Kang, C.-H. Sung, T. Okuda, K. Miyahara, P. J. Maziasz and R. L. Kluech: Met. Mater. Int., 6 (2000) 513. https://doi.org/10.1007/BF03028092
  10. J. H. Ryu and K. S. Lee: J. Corros. Sci. Soc. of Kor., 21 (1992) 69 (Korean).
  11. H.-S. Kim: J. Korean Powder Metall. Inst., 20 (2013) 432 (Korean). https://doi.org/10.4150/KPMI.2013.20.6.432
  12. A. Tiziani, A. Molinari, L. Fedrizzi, A. Tomasi and P. L. Bronora: Corros. Sci., 45 (1990) 672.
  13. A. Sharon and D. Itzhak: Mater. Sci. Eng. A., 224 (1997) 177. https://doi.org/10.1016/S0921-5093(96)10543-8
  14. S. Y. Chen, S. L. Kuan and W. T. Tsai: Corros. Sci., 48 (2006) 634. https://doi.org/10.1016/j.corsci.2005.02.014
  15. A. Bautista, F. Velasco and J. Abenojar: Corros. Sci., 45 (2002) 1343.
  16. F. A. Golightly, F. H. Stott and G. C. Wood: Oxid. Met., 10 (1976) 163. https://doi.org/10.1007/BF00612158