DOI QR코드

DOI QR Code

Nano-scale Inter-lamellar Structure of Metal Powder Composites for High Performance Power Inductor and Motor Applications

  • Kim, Hakkwan (Corporate R&D Institute, Samsung Electro-Mechanics) ;
  • An, Sung Yong (Corporate R&D Institute, Samsung Electro-Mechanics)
  • Received : 2015.04.11
  • Accepted : 2015.06.05
  • Published : 2015.06.30

Abstract

The unique nano-scale inter-lamellar microstructure and unparalleled heat treatment process give our developed metal powder composite its outstanding magnetic property for power inductor & motor applications. Compared to the conventional polycrystalline Fe or amorphous Fe-Cr-Si-B alloys, our unique designed inter-lamellar microstructure strongly decreases the intra-particle eddy current loss at high frequencies by blocking the mutual eddy currents. The combination of optimum permeability, magnetic flux and extremely low core loss makes this powder composite suitable for high frequency applications well above 10 MHz. Moreover, it can be also possible to SMC core for high speed motor applications in order to increase the motor efficiency by decreasing the core loss.

Keywords

References

  1. Q. Zhu, L. Li, M. S. Masteller, and G. J. Corso Del, Appl. Phys. Lett. 69, 3917 (1996). https://doi.org/10.1063/1.117569
  2. T. Sato, T. Iijima, M. Seki, and N. Inagaki, J. Magn. Magn. Mater. 65, 252 (1987). https://doi.org/10.1016/0304-8853(87)90044-8
  3. A. Makino, IEEE Trans. Magn. 48, 1331 (2012). https://doi.org/10.1109/TMAG.2011.2175210
  4. H. Shokrollahi and K. Janghorban, Mater. Sci. Eng. B 134, 41 (2006). https://doi.org/10.1016/j.mseb.2006.07.015
  5. A. H. Taghvaei, H. Shokrollahi, and K. Janghorban, J. Magnetism & Magnetic Mater. 321, 3926 (2009). https://doi.org/10.1016/j.jmmm.2009.07.061
  6. T. Sugama, L. E. Kukacka, N. Carciello, and J. Warren, J. Mater. Sci. 23, 101 (1988). https://doi.org/10.1007/BF01174040
  7. H. Honma, J. Mater. Sci. 29, 949 (1994). https://doi.org/10.1007/BF00351415
  8. Y. Sun, X. Y. Li, and T. Bell, Surf. Eng. 15, 49 (1999). https://doi.org/10.1179/026708499322911647
  9. J. Youles, Powder Handling & Processing 15, 132 (2003).
  10. http://www.optique-ingenieur.org/en/courses/OPI_ang_M05_ C02/co/Contenu_02.html Fundamentals of Semiconductor Physics.
  11. A. Makino, H. Men, T. Kubota, K. Yubuta, and A. Inoue, Mater. Trans. 50, 204 (2009). https://doi.org/10.2320/matertrans.MER2008306
  12. N. Ridley, Metall. Trans. A 15, 1019 (1984). https://doi.org/10.1007/BF02644694
  13. J. R. Davis, Metals Handbook Desk Edition, 2nd ed., 153 (1998).
  14. H. Hojo, N. Akagi, T. Sawayama, and H. Mitani, Kobelco Tech. Review 30, 30 (2011).
  15. R. M. Bozorth, Ferromagnetism. Van Nostrand, New York (1951) Ch. 3-8. (reprinted by IEEE Press, New York, 1993).
  16. C. W. Chen, Magnetism and Metallurgy of Soft Magnetic Materials, Dover, New York (1986).
  17. A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers, Boston (1999) Ch. 12.
  18. X. T. Huo, University of Canterbury, Electrical and Computer Engineering, Maters Thesis (2009).
  19. http://en.wikipedia.org/wiki/skin_effect.