DOI QR코드

DOI QR Code

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen (IFW Dresden, Institut fur Metallische Werkstoffe) ;
  • Bartusch, Birgit (IFW Dresden, Institut fur Metallische Werkstoffe) ;
  • Schurack, Frank (IFW Dresden, Institut fur Metallische Werkstoffe) ;
  • He, Guo (IFW Dresden, Institut fur Metallische Werkstoffe) ;
  • Schultz, Ludwig (IFW Dresden, Institut fur Metallische Werkstoffe)
  • Published : 2002.12.01

Abstract

Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Keywords

References

  1. Advanced Aerospace Materials no.1 W. J. G. Bunk;H. Buhl(Ed.)
  2. Non-Equilibrium Processing of Materials C. Suryanarayana (Ed.)
  3. Prog. Mater. Sci. v.64 no.1 C. Suryanarayana
  4. Metall. Trans. v.1 no.2943 J. S. Benjamin
  5. MRS Bull. v.24 no.42 W. L. Johnson https://doi.org/10.1557/S0883769400069980
  6. Acta Mater. v.48 no.277 A. Inoue
  7. Mater. Trans. JIM v.32 no.1005 T. Zhang;A. Inoue;T. Masumoto https://doi.org/10.2320/matertrans1989.32.1005
  8. Appl. Phys. Lett. v.63 no.2341 A. Peker;W. L. Johnson
  9. J. Appl. Phys. v.77 no.5446 M. Seidel;J. Eckert;L. Schultz https://doi.org/10.1063/1.359239
  10. Mater. Sci. Egn. v.A226-228 no.364 J. Eckert
  11. Metall. Mater. Trans. v.29A no.1811 C. T. Liu;L. Heatherly;D. S. Eaton;C. A. Carmichael;J. H. Schneibel;C. H. Chen;J. L. Wright;M. H. Yoo;J. A. Horton;A. Inoue
  12. Mater. Trans. JIM v.38 no.793 H. Kato;A. Inoue https://doi.org/10.2320/matertrans1989.38.793
  13. Appl. Phys. Lett. v.71 no.3808 H. Choi-Yim;W. L. Johnson https://doi.org/10.1063/1.120512
  14. Nature v.367 no.541 H. Chen;Y. He;G. J Shiflet;S. J. Poon https://doi.org/10.1038/367541a0
  15. Acta Mater. v.47 no.2455 H. Choi-Yim;R. Busch;U. Koster;W. L. Johnson https://doi.org/10.1016/S1359-6454(99)00103-2
  16. J. Appl. Phys. v.85 no.7112 J. Eckert;A. Kubler;L. Schultz https://doi.org/10.1063/1.370519
  17. Mater. Trans. JIM v.40 no.42 C. Fan;A. Inoue https://doi.org/10.2320/matertrans1989.40.42
  18. J. Mater. Res. v.13 no.2896 R. B. Dandliker;R. D. Conner;W. L. Johnson https://doi.org/10.1557/JMR.1998.0396
  19. Appl. Phys. Lett. v.79 no.1456 C. P. Kim;R. Busch;A. Masuhr;H. Choi-Yim;W. L. Johnson https://doi.org/10.1063/1.1390317
  20. Acta Mater. v.46 no.6089 R. D. Conner;R. B. Dandliker;W. L. Johnson https://doi.org/10.1016/S1359-6454(98)00275-4
  21. Phys. Rev. Lett. v.84 no.2901 C. C. Hays;C. P. Kim;W. L. Johnson https://doi.org/10.1103/PhysRevLett.84.2901
  22. Acta Mater. v.49 no.1507 F. Szuecs;C. P. Kim;W. L. Johnson https://doi.org/10.1016/S1359-6454(01)00068-4
  23. Appl. Phys. Lett. v.80 no.2478 U. Kuhn;J. Eckert;N. Mattern;L. Schultz https://doi.org/10.1063/1.1467707
  24. Mater. Trans. JIM v.36 no.866 A. Inoue https://doi.org/10.2320/matertrans1989.36.866
  25. Appl. Phys. Lett. v.81 no.1020 C. Fan;R. T. Ott;T. C. Hufnagel https://doi.org/10.1063/1.1498864
  26. Scripta. Mater. v.38 no.595 J. Eckert;M. Seidel;A. Kubler;U. Klement;L. Schultz https://doi.org/10.1016/S1359-6462(97)00517-4
  27. Mater. Sci. Forum. v.360-362 no.85 S. Deledda;J. Eckert https://doi.org/10.4028/www.scientific.net/MSF.360-362.85
  28. J. Metastable and Nanocrystalline Mater. v.343-346 no.129 B. Weiβ;J. Eckert
  29. Jpn. J. Appl. Phys. v.32 no.2063 S. Takeuchi;T. Hashimoto https://doi.org/10.1143/JJAP.32.2063
  30. Phil. Mag. Lett. v.71 no.91 M. Feuerbacher;B. Baufeld;R. Rosenfeld;M. Bartusch;G. Hanke;M. Beyss;M. Wollgarten;U. Messerschmidt;K. Urban https://doi.org/10.1080/09500839508241000
  31. J. Non-Cryst. Solids v.153 no.468 L. Bresson;D. Gratias https://doi.org/10.1016/0022-3093(93)90397-G
  32. J. Non-Cryst. Solids v.153-154 no.466 U. Koster;W. Liu;H. Liebertz;M. Michel
  33. Light Alloys I. J. Polmear
  34. J. de Physique Colloque v.C3-9 no.407 P. Sainfort;B. Dubost
  35. Acta Metall. Mater. v.43 no.2881 P. Liu;A. H. Stigenberg;J. O. Nilson https://doi.org/10.1016/0956-7151(94)00461-P
  36. Mater. Trans. JIM v.33 no.723 A. Inoue;M. Watanabe;H. M. Kimura;F. Takahashi;A. Nagata;T. Masumoto https://doi.org/10.2320/matertrans1989.33.723
  37. Mter. Trans. JIM v.34 no.162 M. Watanabe;A. Inoue;H. M. Kimura;T. Aiba;T. Masumoto https://doi.org/10.2320/matertrans1989.34.162
  38. New Horizons in Quasicrystals no.256 A. Inoue;H. Kimura;K. Kita;A. I. Goldman(Eds.);D. J. Sordelet(Eds.);P. A. Thiel(Eds.);J. M. Dubois(Eds.)
  39. J. Metastable and Nanocrystalline Mater. v.2-6 no.49 F. Schurack;J. Eckert;L. Schultz https://doi.org/10.4028/www.scientific.net/JMNM.2-6.49
  40. J. Mter. Res. v.8 no.5 A. P. Tsai;K. Aoki;A. Inoue;T. Masumoto https://doi.org/10.1557/JMR.1993.0005
  41. Mater. Sci. Eng. v.A294-296 no.99 S. M. Lee;J. H. Jung;E. Fleury;W. T. Kim;D. H. Kim
  42. J. Mater. Sci. v.36 no.963 E. Fleury;S. M. Lee;W. T. Kim;D. H. Kim https://doi.org/10.1023/A:1004875824039
  43. Jpn. J. Appl. Phys. v.26 no.1994 A. P. Tsai;A. Inoue;T. Masumoto https://doi.org/10.1143/JJAP.26.L1994
  44. Acta Mater. v.49 no.1351 F. Schurack;J. Eckert;L. Schultz https://doi.org/10.1016/S1359-6454(01)00045-3
  45. J. Appl. Phys. v.78 no.6514 X. H. Lin;W. L. Johnson https://doi.org/10.1063/1.360537
  46. Mater. Trans. JIM v.39 no.1001 T. Zhang;A. Inoue https://doi.org/10.2320/matertrans1989.39.1001
  47. Z. Metallkde. v.90 no.908 J. Eckert;N. Schlorke-de; Boer;B. Weiβ;L. Schultz
  48. Scripta Mater. v.46 no.31 S. Deledda;J. Eckert;L. Schultz https://doi.org/10.1016/S1359-6462(01)01191-5
  49. Mater. Sci. Eng. v.A301 no.1 J. Eckert;A. Reger-Leonhard;B. Weiβ;M. Heilmaier
  50. J. Appl. Phys. v.83 no.4134 R. Busch;W. Liu;W. L. Johnson https://doi.org/10.1063/1.367167
  51. Acta Mater. v.46 no.5873 P. de Hey;J. Sietsma;A. van den Beukel https://doi.org/10.1016/S1359-6454(98)00234-1
  52. Acta Metall. v.25 no.407 F. Spaepen https://doi.org/10.1016/0001-6160(77)90232-2
  53. J. Metastable and Nanocrystalline Mater. v.8 no.27 R. Nicula;A. Jianu;G. Holzhuter;T. Bargels;E. Burkel https://doi.org/10.4028/www.scientific.net/JMNM.8.27
  54. Mater. Sci. Eng. v.A133 no.383 F. Faudot;A. Quivy;Y. Calvayrac;D. Gratias;M. Harmelin
  55. J. Non-Cryst. Solids v.153-154 no.482 D. Gratias;Y. Calvayrac;Q. Devaud-Rzepski;F. Faudot;M. Harmelin;A. Quivy;P. Bancel https://doi.org/10.1016/0022-3093(93)90400-R
  56. Phil. Mag. Lett. v.58 no.157 T. Ishimasa;Y. Fukano;M. Tsuchimori https://doi.org/10.1080/09500838808214748
  57. Acta Mater. v.49 no.1821 A. I. Salimon;A. M. Korsunsky;E. V. Shelekov;T. A. Sviridova;S. D. Kaloshkin;V. S. Tcherdyntsev;Y. V. Baldokhin https://doi.org/10.1016/S1359-6454(01)00077-5
  58. Mater. Sci. Eng. v.A181/A182 no.841 N. Asahi;T. Maki;T. Matsumoto;S. Sawai
  59. Scripta Mater. v.46 no.407 Z. Bian;G. He;G. L. Chen https://doi.org/10.1016/S1359-6462(01)01233-7