DOI QR코드

DOI QR Code

Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties

액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성

  • Kim, Yoo-Young (Dept. of Mechanical Engineering, Gyeongnam National University of Science and Technology) ;
  • Song, Ju-Suck (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University) ;
  • Cho, Kwon-Koo (Dept. of Materials Engineering and Convergence Technology & RIGET, Gyeongsang National University)
  • 김유영 (경남과학기술대학교 기계공학과) ;
  • 송주석 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소) ;
  • 조권구 (경상대학교 나노신소재융합공학과 & 그린에너지 융합연구소)
  • Received : 2016.08.02
  • Accepted : 2016.08.15
  • Published : 2016.08.28

Abstract

Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

Keywords

References

  1. G.G. Harding: J. Power Sources, 78 (1999) 193. https://doi.org/10.1016/S0378-7753(99)00037-3
  2. Hong Li, Zhaoxiang Wang, Liquan Chen and Xuejie Huang: Adv. Mater., 21 (2009) 4593. https://doi.org/10.1002/adma.200901710
  3. Yunhua Xu, Yujie Zhu, Yihang Liu and Chunsheng Wang: Adv. Energy Mater., 3 (2013) 128. https://doi.org/10.1002/aenm.201200346
  4. Duc Tung Ngo, Ramchandra S. Kalubarme, Hang T. T. Le, John G. Fisher, Choong-Nyeon Park, Il-Doo Kim and Chan-Jin Park: Adv. Funct. Mater., 24 (2014) 5291. https://doi.org/10.1002/adfm.201400888
  5. Masaki Yoshio, Takaaki Tsumura and Nikolay Dimov: J. Power Sources, 146 (2005) 10. https://doi.org/10.1016/j.jpowsour.2005.03.143
  6. Martin Winter and Jurgen O. Besenhard: Electrochim. Acta, 45 (1999) 31. https://doi.org/10.1016/S0013-4686(99)00191-7
  7. Meng-Chang Lin, Ming Gong, Bingan Lu, Yingpeng Wu, Di-Yan Wang, Mingyun Guan, Michael Angell, Changxin Chen, Jiang Yang, Bing-Joe Hwang and Hongjie Dai: NATURE, 520 (2015) 324. https://doi.org/10.1038/nature14340
  8. Vilas G. Pol, Jianguo Wen, Dean J. Miller and Michael M. Thackeray: J. Electrochem. Soc., 161 (2014) A777. https://doi.org/10.1149/2.064405jes
  9. Eiji Hosono, Hirofumi Matsuda, Itaru Honma, Masaki Ichihara and Haoshen Zhou: J. Electrochem. Soc., 154 (2007) A146. https://doi.org/10.1149/1.2405727
  10. Mario Wachtler, Jrgen O. Besenhard and Martin Winter: J. Power Sources, 94 (2001) 189. https://doi.org/10.1016/S0378-7753(00)00585-1
  11. Jiangwei Wang, Feifei Fan, Yang Liu, Katherine L. Jungjohann, Seung Woo Lee, Scott X. Mao, Xiaohua Liu and Ting Zhu: J. Electrochem. Soc., 161 (2014) F3019. https://doi.org/10.1149/2.0041411jes
  12. Kwang Sup Eom, JaehanJung, Jung Tae Lee, Valentin-Lair, TapeshJoshi, Seung Woo Lee, ZhiqunLin and Thomas. F. Fuller: Nano Energy, 12 (2015) 314. https://doi.org/10.1016/j.nanoen.2014.12.041
  13. Zhiqiang Zhu, Shiwen Wang, Jing Du, Qi Jin, Tianran Zhang, Fangyi Cheng and Jun Chen: Nano Lett., 14 (2014) 153. https://doi.org/10.1021/nl403631h
  14. J. Read, D. Foster, J. Wolfenstine and W. Behl: J. Power Sources, 96 (2001) 277. https://doi.org/10.1016/S0378-7753(00)00569-3
  15. Yangang Wang, Bo Li, Chengli Zhang, Hong Tao, Shifei Kang, Sheng Jiang and Xi Li: J. Power Sources, 219 (2012) 89. https://doi.org/10.1016/j.jpowsour.2012.07.047
  16. Xiulin Fan, Jie Shao, Xuezhang Xiao, Xinhu Wang, Shouquan Li, Hongwei Ge and Lixin Chenn: Nano Energy, 9 (2014) 196. https://doi.org/10.1016/j.nanoen.2014.07.020
  17. Chun-jing Liu, Hao Huang, Guo-zhong Cao, Fang-hong Xue, Ramon Alberto Paredes Camacho and Xing-long Dong: Electrochim. Acta, 144 (2014) 376. https://doi.org/10.1016/j.electacta.2014.07.068
  18. Jusef Hassoun, Gaelle Derrien, Stefania Panero and Bruno Scrosati: Adv. Mater., 20 (2008) 3169. https://doi.org/10.1002/adma.200702928
  19. Meng Wu, Xiaowei Li, Qun Zhou, Hai Ming, Jason Adkins and Junwei Zheng: Electrochim. Acta, 123 (2014) 144. https://doi.org/10.1016/j.electacta.2013.12.192
  20. Il-seok Kim, G. E. Blomgren and P. N. Kumtaa: Electrochem. Solid-State Lett., 7 (2004) A44. https://doi.org/10.1149/1.1643792
  21. M. Marcinek, L.J. Hardwick, T.J. Richardson, X. Song and R. Kostecki: J. Power Sources, 173 (2007) 965. https://doi.org/10.1016/j.jpowsour.2007.08.084
  22. Yunhua Xu, Qing Liu, Yujie Zhu, Yihang Liu, Alex Langrock, Michael R. Zachariah and Chunsheng Wang: Nano Lett., 13 (2013) 470. https://doi.org/10.1021/nl303823k
  23. Duk-Hee Lee, Hyun-Woo Shim, Jae-Chan Kim and Dong-Wan Kim: RSC Adv., 4 (2014) 44563. https://doi.org/10.1039/C4RA07928K
  24. S. H. Jun, Y. R. Uhm and C. K. Rhee: J. Korean Powder Metall. Inst., 17 (2010) 295. https://doi.org/10.4150/KPMI.2010.17.4.295
  25. Yan Wang, Zengsheng Ma and Chunsheng Lu: Compos. Interfaces, 23 (2016) 273. https://doi.org/10.1080/09276440.2016.1136523
  26. K. T. Lee, Y. S. Jung and S. M. Oh: J. Am. Chem. Soc., 125 (2003) 5652. https://doi.org/10.1021/ja0345524
  27. I. A. Courtney and J. R. Dahn: J. Electrochem. Soc., 144 (1997) 2045. https://doi.org/10.1149/1.1837740
  28. Y. Xu. Q. Liu, Y. Zhu, Y. Liu, A. Langrock, M. R. Zachariah and C. Wang: Nano Lett., 13 (2013) 470. https://doi.org/10.1021/nl303823k