• Title/Summary/Keyword: amorphous In-Ga-Zn-O

Search Result 85, Processing Time 0.031 seconds

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power (RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화)

  • Kim, Sang-Hun;Park, Yong-Heon;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

Changes in Electrical and Optical Properties and Chemical States of the Amorphous In-Ga-Zn-O Thin Films Depending on Growth Temperature

  • Yoo, Han-Byeol;Thakur, Anup;Kang, Se-Jun;Baik, Jae-Yoon;Lee, Ik-Jae;Park, Jae-Hun;Kim, Ki-Jeong;Kim, Bong-Soo;Shin, Hyun-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.346-346
    • /
    • 2012
  • We investigated electrical and optical properties and chemical states of amorphous In-Ga-Zn-O (a-IGZO) thin films deposited at different substrate temperatures (from room temperature to $300^{\circ}C$). a-IGZO thin films were fabricated by radio frequency magnetron sputtering using $In_2O_3$ : $Ga_2O_3$ : ZnO = 1 : 1 : 1 target, and their electrical and optical properties and chemical states were investigated by Hall-measurement, UV-visible spectroscopy and x-ray photoelectron spectroscopy (XPS), respectively. The data showed that as substrate temperature increased, carrier concentration increased, but mobility, conductivity, transmittance in the shorter wavelength region (>350 nm), and the Tauc-plot-estimated optical bandgap decreased. XPS data indicated that the intensity of In 3d peak compared to Ga 3d peak increased but the intensity of Zn 3d peak compared to Ga 3d decreased, and that, from the deconvoluted O 1s peak, defects or oxygen vacancies and non-quaternary contents increased as the temperature increased. The relative intensity changes of the In, Zn, and O 1s sub-component are suggested to explain the changes in electrical and optical properties.

  • PDF

Characterization of gate oxide breakdown in junctionless amorphous InGaZnO thin film transistors (무접합 비정질 InGaZnO 박막 트랜지스터의 게이트 산화층 항복 특성)

  • Chang, Yoo Jin;Seo, Jin Hyung;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.117-124
    • /
    • 2018
  • Junctionless amorphous InGaZnO thin film transistors with different film thickness have been fabricated. Their device performance parameters were extracted and gate oxide breakdown voltages were analyzed with different film thickness. The device performances were enhanced with increase of film thickness but the gate oxide breakdown voltages were decreased. The device performances were enhanced with increase of temperatures but the gate oxide breakdown voltages were decreased due to the increased drain current. The drain current under illumination was increased due to photo-excited electron-hole pair generation but the gate oxide breakdown voltages were decreased. The reason for decreased breakdown voltage with increase of film thickness, operation temperature and light intensity was due to the increased number of channel electrons and more injection into the gate oxide layer. One should decide the gate oxide thickness with considering the film thickness and operating temperature when one decides to replace the junctionless amorphous InGaZnO thin film transistors as BEOL transistors.

Study of relation between gate overlap length and device reliability in amorphous InGaZnO thin film transistors (비정질 InGaZnO 박막트랜지스터에서 Gate overlap 길이와 소자신뢰도 관계 연구)

  • Moon, Young-Seon;Kim, Gun-Young;Jeong, Jin-Yong;Kim, Dae-Hyun;Park, Jong-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.769-772
    • /
    • 2014
  • The device reliability in amorphous InGaZnO under NBS(Negative Bias Stress) and hot carrier stress with different gate overlap has been characterized. Amorphous InGaZnO thin film transistor has been measured. and is channel $width=104{\mu}m$, $length=10{\mu}m$ with gate overlap $length=0,1,2,3{\mu}m$. The device reliability has been analyzed by I-V characteristics. From the experiment results, threshold voltage variation has been increased with increasing of the gate overlap length after hot carrier stress. Also, threshold voltage variation has been decreased and Hump Effect has been observed later with increasing of the gate overlap length after NBS.

  • PDF

Effect of RF Power on the Structural, Optical and Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착한 비정질 InGaZnO 박막의 구조적, 광학적, 전기적 특성에 미치는 RF 파워의 영향)

  • Shin, Ji-Hoon;Cho, Young-Je;Choi, Duck-Kyun
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • To investigate the effect of RF power on the structural, optical and electrical properties of amorphous InGaZnO (a-IGZO), its thin films and TFTs were prepared by RF magnetron sputtering method with different RF power conditions of 40, 80 and 120 W at room temperature. In this study, as RF power during the deposition process increases, the RMS roughness of a-IGZO films increased from 0.26 nm to 1.09 nm, while the optical band-gap decreased from 3.28 eV to 3.04 eV. In the case of the electrical characteristics of a-IGZO TFTs, the saturation mobility increased from $7.3cm^2/Vs$ to $17.0cm^2/Vs$, but the threshold voltage decreased from 5.9 V to 3.9 V with increasing RF power. It is regarded that the increment of RF power increases the carrier concentration of the a-IGZO semiconductor layer due to the higher generation of oxygen vacancies.

Performance Improvement of Amorphous In-Ga-Zn-O Thin-film Transistors Using Different Source/drain Electrode Materials (서로 다른 소스/드레인 전극물질을 이용한 비정질 In-Ga-Zn-O 박막트랜지스터 성능향상)

  • Kim, Seung-Tae;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • In this study, we proposed an a-IGZO (amorphous In-Ga-Zn-O) TFT (thin-film transistor) with off-planed source/drain structure. Furthermore, two different electrode materials (ITO and Ti) were applied to the source and drain contacts for performance improvement of a-IGZO TFTs. When the ITO with a large work-function and the Ti with a small work-function are applied to drain electrode and source contact, respectively, the electrical performances of a-IGZO TFTs were improved; an increased driving current, a decreased leakage current, a high on-off current ratio, and a reduced subthreshold swing. As a result of gate bias stress test at various temperatures, the off-planed S/D a-IGZO TFTs showed a degradation mechanism due to electron trapping and both devices with ITO-drain or Ti-drain electrode revealed an equivalent instability.

Effect of annealing on the electrical properties of amorphous oxide semiconductor $InGaZnO_4$ films (열처리에 의한 비정질 산화물 반도체 $InGaZnO_4$ 박막의 전기적 특성 변화 연구)

  • Bae, Sung-Hwan;Koo, Hyun;Yoo, Il-Hwan;Jung, Myung-Jin;Kang, Suk-Ill;Park, Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1277_1278
    • /
    • 2009
  • Amorphous oxide semiconductor $InGaZnO_4$(IGZO) is a very promising candidate of channel layer in transparent thin film trasisitor(TTFT) because of its high mobility and high transparency in visible light region. Amorphous IGZO films were deposited at room temperature on a fused silica substrate using pulsed laser deposition method. In-situ post annealing was carried out at 150-450C right after film deposition. The $O_2$ partial pressures during the deposition and the post annealing was fixed to 10mTorr. The electron transport properties of the amorphous IGZO films were improved by thermal annealing. The temperature range in which the improvement of the electrical properties, was 150C~300C.

  • PDF

The Investigation of Microwave irradiation on Solution-process amorphous Si-In-Zn-O TFT

  • Hwang, Se-Yeon;Kim, Do-Hun;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.205-205
    • /
    • 2015
  • 최근, 비정질 산화물 반도체를 이용한 TFT는 투명성, 유연성, 저비용, 저온공정이 가능하기 때문에 차세대 flat-panel 디스플레이의 back-plane TFT로써 다양한 방면에서 연구되고 있다. 산화물 반도체 In-Zn-O-시스템에서는 Gallium (Ga)을 suppressor로 사용한 a-In-Ga-Zn-O (a-IGZO) 뿐만 아니라, Magnesium (Mg), Hafnium (Hf), Tin (Sn), Zirconium (Zr) 등의 다양한 물질이 연구되었다. 그 중 Silicon (Si)은 Ga, Hf, Sn, Zr, Mg과 같은 suppressor에 비해 구하기 쉬우며 가격적인 측면에서도 저렴하다는 장점이 있다. solution 공정으로 제작한 산화물 반도체 TFT는 진공 시스템을 사용한 공정보다 공정시간이 짧고, 저비용, 대면적화가 가능하다는 장점이 있다. 하지만, 투명하고 유연한 device를 제작하기 위해서는 저온 공정과 low thermal budget은 필수적이다. 이러한 측면에서 MWI (Microwave Irradiation)는 저온공정이 가능하며, 짧은 공정 시간에도 불구하고 IZO 시스템의 산화물 반도체의 전기적 특성 향상을 기대할 수 있는 효율 적인 열처리 방법이다. 본 연구에서는 In-Zn-O 시스템의 TFT에서 silicon (Si)를 Suppressor로 사용한 a-Si-In-Zn-O (SIZO) TFT를 제작하여 두 가지 열처리 방법을 사용하여 TFT의 전기적 특성을 확인하였다. 첫 번째 방법은 Box Furnace를 사용하여 N2 분위기에서 $600^{\circ}C$의 온도로 30분간 열처리 하였으며, 두 번째는 MWI를 사용하여 1800 W 출력 (약 $100^{\circ}C$)에 2분간 열처리 하였다. MWI 열처리는 Box Furnace 열처리에 비해 저온 공정 및 짧은 시간에도 불구하고 향상된 전기적 특성을 확인 할 수 있었다.

  • PDF