• Title/Summary/Keyword: alternative theorem

Search Result 56, Processing Time 0.022 seconds

GENERALIZATIONS OF THE NASH EQUILIBRIUM THEOREM ON GENERALIZED CONVEX SPACES

  • Park, Se-Hie
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.697-709
    • /
    • 2001
  • Generalized forms of the von neumann-Sion type minimax theorem, the Fan-Ma intersection theorem, the Fan-a type analytic alternative, and the Nash-Ma equilibrium theorem hold for generalized convex spaces without having any linear structure.

  • PDF

GENERALIZED MINIMAX THEOREMS IN GENERALIZED CONVEX SPACES

  • Kim, Hoon-Joo
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.559-578
    • /
    • 2009
  • In this work, we obtain intersection theorem, analytic alternative and von Neumann type minimax theorem in G-convex spaces. We also generalize Ky Fan minimax inequality to acyclic versions in G-convex spaces. The result is applied to formulate acyclic versions of other minimax results, a theorem of systems of inequalities and analytic alternative.

FIXED POINTS AND ALTERNATIVE PRINCIPLES

  • Park, Se-Hie;Kim, Hoon-Joo
    • Honam Mathematical Journal
    • /
    • v.34 no.3
    • /
    • pp.439-449
    • /
    • 2012
  • In a recent paper, M. Balaj [B] established an alternative principle. The principle was applied to a matching theorem of Ky Fan type, an analytic alternative, a minimax inequality, and existence of solutions of a vector equilibrium theorem. Based on the first author's fixed point theorems, in the present paper, we obtain generalizations of the main result of Balaj [B] and their applications.

COINCIDENCE THEOREMS FOR NONCOMPACT ℜℭ-MAPS IN ABSTRACT CONVEX SPACES WITH APPLICATIONS

  • Yang, Ming-Ge;Huang, Nan-Jing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.6
    • /
    • pp.1147-1161
    • /
    • 2012
  • In this paper, a coincidence theorem for a compact ${\Re}\mathfrak{C}$-map is proved in an abstract convex space. Several more general coincidence theorems for noncompact ${\Re}\mathfrak{C}$-maps are derived in abstract convex spaces. Some examples are given to illustrate our coincidence theorems. As applications, an alternative theorem concerning the existence of maximal elements, an alternative theorem concerning equilibrium problems and a minimax inequality for three functions are proved in abstract convex spaces.

A Local Limit Theorem for Large Deviations

  • So, Beong-Soo;Jeon, Jong-Woo
    • Journal of the Korean Statistical Society
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 1982
  • A local limit theorem for large deviations for the i.i.d. random variables was given by Richter (1957), who used the saddle point method of complex variables to prove it. In this paper we give an alternative form of local limit theorem for large deviations for the i.i.d. random variables which is essentially equivalent to that of Richter. We prove the theorem by more direct and heuristic method under a rather simple condition on the moment generating function (m.g.f.). The theorem is proved without assuming that $E(X_i)=0$.

  • PDF

An exploration of alternative way of teaching the Fundamental Theorem of Calculus through a didactical analysis (미적분학의 기본정리의 교수학적 분석에 기반을 둔 지도방안의 탐색)

  • Kim, Sung-Ock;Chung, Soo-Young;Kwon, Oh-Nam
    • Communications of Mathematical Education
    • /
    • v.24 no.4
    • /
    • pp.891-907
    • /
    • 2010
  • This study analyzed the Fundamental Theorem of Calculus from the historical, mathematical, and instructional perspectives. Based on the in-depth analysis, this study suggested an alternative way of teaching the Fundamental Theorem of Calculus.

ALTERNATIVE PROOF OF EXISTENCE THEOREM FOR CERTAIN COMPETITION MODELS

  • Ahn, Inkyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.119-130
    • /
    • 2000
  • We give alternative proof of the existence theorem for certain elliptic systems describing competing interactions with nonlinear di usion. The existence of positive solution depends on the sign of the principal eigenvalue of suitable operators of Schr$\ddot{o}$dinger type. If the sign of such operators are both positive, then system has a positive solution. The main tool employed is the fixed point index of compact operator on positive cones.

  • PDF

Existence and Stability Results on Nonlinear Delay Integro-Differential Equations with Random Impulses

  • Vinodkumar, Arumugam;Gowrisankar, Muthusamy;Mohankumar, Prathiban
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.431-450
    • /
    • 2016
  • In this paper, the existence, uniqueness, stability via continuous dependence and Ulam stabilities of nonlinear integro-differential equations with random impulses are studied under sufficient condition. The results are obtained by using Leray-Schauder alternative fixed point theorem and Banach contraction principle.

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.