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ABSTRACT

A local limit theorem for large deviations for the i.i.d. random variables was given
by Richter(1957), who used the saddle point method of complex variables to prove
it. In this paper we give an alternative form of local limit theorem for large deviations
for the i.i.d. random variables which is essentially equivalent to that of Richter. We
prove the theorem by more direct and heuristic method under a rather simple condi-
tion on the moment generating function (m.g.f.). The theorem is proved without
assuming that E(X))=0.

1. Introduction

Let X;, X,, ---, be a sequence of independent and identically distributed random
variables with common distribution function F. Since the original work of Crameér(19
38), there have been a great deal of investigations on limiting probability for large
deviations, namely, Pr(X;+...+X.> v 7#x.) where {x.} is a sequence of constants
increasing without bound. See Bahardur and Zabell(1979) and Nagaev(1979) and ref-
erences therein.

In contrast with integral limit theorems, local limit theorems have received less atten-
tion. In fact the pioneering work by Richter(1957) still remains more or less intact
except for a few minor modifications and extensions.

In this paper, we also consider Richter’s paper and obtain an alternative but essen-

tially equivalent form of his result. Our proof is more direct and shorter, and explains
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the way how the large deviation rate (or Choernoff index) should appear in local limit
theorem as it does in integral limit theorem. Therefore we consider our proof more

heuristic. The theorem is proved without assuming that E(X)=0.

2. Main Result

Theorem. Let X;, X,, «- be i.i.d. with common distribution function F. Let m be

a real number. Let the following conditions hold:
1) ¢()={" exp(sx)dF(x)<eo for sN,
where NN is an open interval containing zero.
2) There is a z&N such that
¢'(v)/¢(z)=m.
3) There is a positive integer #n, such that

= | (s+it)
i A ey

Let f.(-) be the p.d.f. of—&_l—';;x" for n>n,.

Then, for w=w.=0(1), we have, as n—oo,

"dt <co.

fulmta)=—L2 exp{=n(m+w)} (1+0(D},

where r(@= sup {sa—logg(s)}
2 9" (D)4 ()2
and 0?= oL 2 >0.

3. Proof of Theorem

We need the following lemmas to prove the theorem.
Lemma 1: Let F:(+) be a d.f. with finite m.g.f. ¢(+) on some neighborhood NN of zero.
For each &N, let F:(-) be defined as
_ exp(zrx)
dF.(x)= HO) dF(x).
Let F*»(.) and F*~(.) be n-fold convolution of F:(+) and F(-) respectively.
Then

amy oy Xp(Tx) n
ey dF¢ <x>-—¢#dﬂ ().
Proof:
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S"_"mexp Gtx)dF *(x)
_ S:...S:exp{it(xl—}—"-—l—xn)}dFr(xl)"'decx")
=[7 [T explitGrit o+ x) + et 1)) g (AF () -dF(x2)

=7 _exp(itx)exp(ex)g="()dF* ().
By the uniqueness of characteristic function, we have
AF () =-30C) jpoen (y
W= ©)
as required.
We need another lemma which uses analytic property of m.g.f. ¢(z).

Lemma 2: Let ¢(z) be analytic, and let

{7 tgGs+inar (p>1)
exist and bounded for s,<s<Cs,.
Then as {—-4co,
¢(s+it)—0 uniformly for s,+6<s<<s,—3(3>0).
Proof: Let s,-+0<x<(s,—4.
Then for 0<p<<d and z=x-1y,

¢(2):_1_S (@) 4,

27&71 jo—zj=p W—2Z2
__1 2 i0
=5z SO é(z-+pei®)ds.

1 5 _ 1 e 6
Hence T5 o(2)= P OSO ¢(z+peipdpdf and

sl (1 6o} i)
<K@ {(7(" 1gCs+in|atas] .

Now S::M(s—l—it)l? dt is bounded for s;<{s<(s,, and tends to 0 as y—oo, for every s.
By the bounded convergence, the right hand side goes to zero as y—oco, Hence the
result follows.

We are now ready to prove the theorem.

Recall that d.f. F.(-) is defined by

dF;(x):eX;(CSS;C)dF(x), for each s&N.
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Then its m.g.f. is given by

_ pG+D
PO=Ze

By condition 3), d.f. of the sum X, X; is absolutely continuous for all #>n, An

application of Lemma 1 gives us the inversion formula for all #<{n,:

Here we
_ nexp(—nrx) . © [ ¢(z+it) 1" .
@ f,.(x)——————27r ¢ (T)S-w{_TjTr)__} exp(—itnx)dt for all z&=AN.
take into account that f.(x) =#ng.(nx), where g.(+) is density of ¥, X.
By condition 2), there exists a ¢ such that ¢ (o) =m.

#(z)
Since ¢(z) is analytic in Re(2)eN and ¢(z)>0, we may form ¢(z)=logg(z) which

is the principal branch of logarithm tending to logg(z) as z—z in some neighborhood
of 7.
Since for all z&eN

0<SQ%—¢T® YdF{x)

#(z)
— ¢ <T>¢¢(é;).):¢ (7‘-> :{ EZ;((;')) }I:{loggb(r)}",
{loggp(z)}’ is monotonic in N. Therefore we may invert Z’((;‘)) =x.
Suppose ilg::)) =x,=m+w, for all n

Let &>0 be a number smaller than the radius of the neighborhood within which log

¢(z) is defined. To apply saddle point method, we write the last term in (2) as follows:

I.= S:{%}"exp( —intx)dt

[ E{%}"exm—im}dtﬂen

where

R,,:S”Izc{i%g)iﬁ}"exp(~intx)dt

For nZ>mn,, ¢"(z+it) is the m.g.f. of the absolutely continucus d.f. and ¢*(z) is also
analytic on the strip Re(z)&N. We have by Lemma 2 ¢(s-+it)—0, as |{|-—oco uniformly
in s for every small neighborhood of r which is contained in N.

Consequently there exists a positive number a(e) such that for |/]|>e
[gm(s+it)|<e-*¢m(s) for all s in some neighborhood of 7.

Hence for n>n, we obtain
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Sz +it) |r=no| d(c+it) |m
(3) IR"ISszs ¢(‘L‘) ¢(z‘) dt
Sexp{—a(n—no)/no}gu—‘ﬁ%r)”—)’ dt

<Kexp{—a(n—ny)/n,} =o(n-) for all m>0.
Next we estimate the principal part in I..
Define, for t<(—¢,9),
G.(O)=ttxn+ (7)) — (T +ib)
and
G =itm+¢(c)—¢(z+it).
Absolute continuity of d.f. for #>#n, implies ReG.(£)>0 for |¢]>0.
Also by expansion about zero we have

G () =c.t2+0(t3) as {—0.

where ¢c,=—2{7n) < ¢

2
Similarly we have ReG(#)>0 for |¢]>0 and G(t)=ct*+0(#*) as £—0, where
_9¢'@ e
c= 5 -——2—>0.

Also w.=0(1) implies c¢,—c as n—oco,
By expansion and analytic property of ¢(-), we have also
@ SUP|Gu() —Cat*| =sup| ¢! (za+it /3] <K[t]*=0() as -0,

Hence the principal part of the integral 7, is

=" exp(—nG.()}at

=1 S*“";exp{—ncn(u/JZ)}du.

v d-ev
Define Z.(u)=exp{—nG.(/ v7 )} L ui<evs (1)
Clearly I juj<evsy(#)(u)—1 as n—oo for all u.
And nG.(u/ Vr)=n{c.(u/ vu ) +00/ v 7%} =cau? +n0(ud /n®'?).
By (4), for fixed u, we have

nG.(u/ Vv 7)—cu? as n—oco,
<o () —h(u) =exp(—cu?) as n—oo,

Now again by (4), we may choose ¢>0 and #, such that for n>mny,
nReGA(u/ V7Y=Lt for all |u] <e 7.

Also c.u*—cuPas n—oo and ¢>0, ¢.>0. Therefore there exists n, such that for n>#,,
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:c,.uzzécu2 for all u.

Thus for n>>max(ny, #2),
nReG.(u/ Y 7) =t for all |u] <e 7.
By dominated convergence, one has
S:h,,(u)du—*S:e‘“’du as n—oo,

Consequently we obtain

CL e .
) I ¢gS-we du as n—oo,

Substituting (3), (5) into (2) and taking into account that
r(x) =max [xs—logd(s)} =xr—logd(z),
SEN
where r is the unique s&N such that

&) _
F1O) =4 holds,

we have the result

fa()= J/TZJ exp{—n7(x)} (1+0(1)} as n—roo.

Theorem is proved.
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