• 제목/요약/키워드: alluvium

검색결과 128건 처리시간 0.025초

충적대수층을 이용한 지열히트펌프시스템의 냉방성능 (Cooling Performance of Geothermal Heat Pump using Alluvium Aquifer)

  • 강병찬;박준언;이철우;송윤호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.561-566
    • /
    • 2009
  • Alluvium is sedimentary stratum and composed of gravel, sand, silt, clay. Permeability of alluvium is the higher. If alluvium have lots of aquifer, will be of great use heat source and heat sink of heat pump. Alluvium aquifer contain the thermal energy of surrounding ground. Also geothermal heat pump using alluvium aquifer reduce expenses than general geothermal heat pump, because geothermal heat pump using alluvium aquifer make use of single well. In this study geothermal heat pump using alluvium aquifer was installed and tested for a building. The heat pump capacity is 30USRT. Temperature of ground water is in $12{\sim}17^{\circ}C$ annually and the quality of the water is as good as living water. The heat pump cooling COP is 4.4 ~ 4.7. The system cooling COP is 3.25 ~ 3.6. This performance is as good as BHE type ground source heat pump.

  • PDF

충적층(沖積層)의 투수성(透水性)과 지하수(地下水)의 전기탐사(電氣探査)에 대(對)하여 (Electrical and Hydrological Properties of Alluvium)

  • 진두정
    • 자원환경지질
    • /
    • 제1권1호
    • /
    • pp.70-73
    • /
    • 1968
  • In Korea, ground water exploration by the electric method as a major prospecting tool has been carried out mainly in alluvial deposits, So it is considered to be important to understand the principle concerning the electrical and hydrological properties of alluvium. Factors which affect on the electrical and hydrological properties of alluvium were investigated. Major elements in ground water exploration are porosity and dermeability for most alluvial deposits with exceptions in some particular areas. Much water yield can be expected where alluvial materials have large porosity and small particle size while large particle size in necessary for good permeability. Problem is to locate the points which have comparatively large porosity and good permeability at a time. It is known that electrical resistivity method is proved useful to solve the above problem. The conclusion is: Localities which have greater alluvium thickness(7 to 10m) and 200 to 500 ohm -m of real resistivity value are suitable for well site in alluvial deposits in Korea where alluvium thickness is comparatively small(less than 10m in generaa) and bedrock formations are mainly composed of granite gneiss and granite.

  • PDF

화강암 분지를 흐르는 미호천의 지형학적 특색 (Geomorphological Characteristics of the Miho Stream Flowing through a Granitic Plain, South Korea)

  • 김영래
    • 한국지형학회지
    • /
    • 제28권3호
    • /
    • pp.1-11
    • /
    • 2021
  • The drainage area of the Miho stream is composed of granitic basins, gneissic and sedimentary mountains. 80 percent of the Miho stream flows through the Jincheon basin and the Cheongju inner-plain within the Daebo granite belt. Because the deep weathering of granitic hills provides a large amount of sands to the streams, there are wide floodplains with thick alluvium developed in the basin and plain. The thickness of the alluvium is 5~10m and the width of the floodplains is 2~2.5km. In the basin outlet area where a stream passes through the mountain canyon, wide floodplains and deep alluvium are developed in other riverside. The Miho stream is a sand-gravel channel flowing through the Cheongju inner-plain with wide floodplains and deep alluvium formed by deep weathering of granite.

충적층 차수벽으로서 CJM Grouting (CJM Grouting to Reduce the Permeability in Alluvium)

  • 천병식;양형칠
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.253-263
    • /
    • 2005
  • There were no cases to use CJM Grouting to Reduce the Permeability of open-cut in Alluvium adjacent to Han River. In this paper, the applicability of CJM Grouting to Reduce the Permeability in Alluvium is reasonably estimated by in-situ Permeability test and coring. It is known that the range of improvement is decided by injection pressure, time of high pressure water and by slump, injection pressure of injection materials.

  • PDF

통계분석을 이용한 지하수위 변동 특성 분류

  • 문상기;우남칠
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2001년도 추계학술발표회
    • /
    • pp.155-159
    • /
    • 2001
  • A study on multivariate statistical classification of ground water hydrographs was conducted. The vast data of national ground water monitoring network (78 sites of alluvium) were used. 6 factors were selected to classify the ground water level change. Factor analysis was proved to be useful tool for classifying vast hydrogeological data.

  • PDF

Numerical modeling of dynamic compaction process in dry sands considering critical distance from adjacent structures

  • Pourjenabia, Majid;Hamidi, Amir
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.49-56
    • /
    • 2015
  • Dynamic compaction (DC) is a useful method for improvement of granular soils. The method is based on falling a tamper (weighting 5 to 40 ton) from the height of 15 to 30 meters on loose soil that results in stress distribution, vibration of soil particles and desirable compaction of the soil. Propagation of the waves during tamping affects adjacent structures and causes structural damage or loss of performance. Therefore, determination of the safe or critical distance from tamping point to prevent structural hazards is necessary. According to FHWA, the critical distance is defined as the limit of a particle velocity of 76 mm/s. In present study, the ABAQUS software was used for numerical modeling of DC process and determination of the safe distance based on particle velocity criterion. Different variables like alluvium depth, relative density, and impact energy were considered in finite element modeling. It was concluded that for alluvium depths less than 10 m, reflection of the body waves from lower boundaries back to the soil and resonance phenomenon increases the critical distance. However, the critical distance decreases for alluvium depths more than 10 m. Moreover, it was observed that relative density of the alluvium does not significantly influence the critical distance value.

다중 온도 모니터링을 통한 충적층 및 하상의 지열특성 평가 연구 (A Study on Geothermal Evaluation of Alluvium and Riverbed using Thermal Line Temperature Monitoring)

  • 정우성;김형수;박동순;안영섭
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.171-178
    • /
    • 2006
  • In advanced countries, state-of-the-art temperature monitoring technique is widely used for effective use of geothermal resources. But these kind of modern tools such as Thermal Line Sensor has not been applied to find geothermal characteristics of alluvium and riverbed in domestic area. In this research, state-of-the-art thermal line temperature sensor monitoring was introduced. And long term field test using this type of sensor was performed to find geothermal characteristics of alluvium and riverbed and evaluate the availability for heat energy source. As a result, temperature monitoring technique through thermal line sensor was very effective to obtain basic geothermal information of alluvium deposit and riverbed. Also, it was found that the groundwater temperature phase showed its potential of utilization as a energy source of heat pump. It is estimated that further study shows a specific corelation between temperature monitoring data and its availability as a energy source.

  • PDF

충적대수층 조사를 위한 모래와 점토의 유도분극 특성 고찰 (IP Characteristics of Sand and Silt for Investigating the Alluvium Aquifer)

  • 최상혁;김형수;김지수
    • 지질공학
    • /
    • 제18권4호
    • /
    • pp.423-431
    • /
    • 2008
  • 충적층의 구성물질 중에서 포화된 실트 또는 점토층은 다른 층들에 비해 상대적으로 낮은 전기비저항 값을 나타낸다. 따라서 자료해석에 있어서 실트 및 점토층이 전기비저항이 작고 투수성이 높은 대수층으로 오인될 수 있다. 본 연구에서는 이러한 문제를 극복하고 충적층 내 포화된 실트 또는 점토층과 모래 또는 자갈 대수층을 구분하기 위해 충적층을 구설하고 있는 물질의 전기비저항 및 유도분극 값을 함께 측정하는 실내실험을 실시하였다. 실험결과 실트 또는 점토시료가 모래시료보다 충전성이 높게 나타났으며, 또한 모래와 점토 혼합시료에서 점토함량이 증가함에 따라 전기비저항은 감소하고 충전성은 증가하다가 다시 감소하는 경향을 보였다.

시설원예 냉난방을 위한 온도차에너지 열원용 충적대수층 강변여과수 개발 (Riverbank Filtration Well Development for a Heat Source/Sink of Ground Water Heat Pumps)

  • 조용;이남영;이송이;문종필
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.171.1-171.1
    • /
    • 2010
  • Riverbank filtration wells have been developed to supply a heat source/sink of water in the alluvium aquifer to ground water heat pumps for cooling and heating of a green house. In order to look for an appropriate site to carry out the research, two sites of Jinju and Gumi areas were investigated. In the results of the electrical resistivity surveys, Jinju and Gumi areas have the alluvium aquifer in the depth of 6~17 m and 10~20 m under the ground respectively. Two boreholes have been drilled in each site of both areas. The averaged water level at Jinju site is about 3 m under the ground, and 3.5 m and 6.5 m of sandy gravel aquifer layers are existed in each site. While Gumi site has 10 m water level and 2.5 m and 4.6 m of sandy gravel aquifer. Therefore, it is expected that $1,000m^3$/day of water could be withdrawn at Jinju site rather than Gumi site.

  • PDF