• Title/Summary/Keyword: adjustable parameters

Search Result 122, Processing Time 0.025 seconds

Quadratic Stabilization by $H^{\infty}$ Output Feedback Controllers with Adjustable Parameters (조정가능한 파라미터를 가지는 $H^{\infty}$출력궤환 제어기를 이용한 자승적 안정화)

  • 강성규;이갑래;박홍배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.101-104
    • /
    • 1997
  • In this paper, we deal with a quadratic stabilization by $H^{\infty}$ output feedback controllers with adjustable parameters. The designed controller contains a contractive time-varying gain which can be used to adjust the responses of the resulting closed-loop system. The free parameter expressed as time-varying gain is chosen so that a Lyapunov function of the closed-loop system descends as fast as possible. A numerical example is given to show the validity of proposed method..

  • PDF

Validity of the Analytic Expression for the Temperature of Joule Heated Nano-wire

  • Ha, Seung-Seok;You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • We confirm the validity of the analytic expression for the temperature of the Joule heated nano-wire [C.-Y. You et al. Appl. Phys. Lett. 89, 222513 (2006)] with finite element method. The temperature of the Joule heated nano-wire is essential information for the research of the current induced domain wall movement. The analytic expression includes an adjustable parameter which must be determined. Since the physical origin of the adjustable parameter is simplification of the heat source profile, the validity of the analytic expression must be examined for wide range of the nano-wire structure. By comparison with this analytic expression with the results of full numerical finite element method, the adjustable parameter has been determined. The numerically confirmed adjustable parameter values are in the range of 0.60$\sim$0.69, which is well matched with the theoretically expected one. Furthermore, it is found that the adjustable parameter is a slow varying function of the nano-wire geometry. Based on this numerical confirmation, we can apply the analytic expression for the wide range of the nano-wire geometry with proper adjustable parameters.

Study on the Minimization of Shape Parameters by Reverse Design of an Axial Turbine Blade (축류형 터빈 익형의 역설계에 의한 최소 형상변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Yoon, Eui-Soo;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.4 s.9
    • /
    • pp.30-37
    • /
    • 2000
  • Several reverse design methods are developed and applied to the suction or pressure surface for finding design values of blade geometry for a given axial turbine blade. Re-designed blade profiles using shape parameters are compared with measured blade data. Essential shape parameters for blade design are induced by the procedure of reverse design for best fitting. Characteristics of shape parameters are evaluated through the system design method and restriction conditions of structural stability or aerodynamic flow loss. Some of shape parameters i.e blade radius or exit blade angle etc., are classified to weakly adjustable shape parameters, otherwise strongly adjustable shape parameters which would be applied for controlling blade shape. Average deviation values between the measured data and re-designed blade using shape parameters are calculated for each design method. Comparing with the average deviation for a given blade geometry, minimum shape parameters required to design a blade geometry are obtained.

  • PDF

Adaptive control for pH systems (pH공정의 적응제어)

  • 성수환;이인범;이지태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.457-460
    • /
    • 1996
  • An adaptive pH control is developed to manipulate the nonlinearities and time-varying properties of pH systems. In this research, we estimate two adjustable parameters by using the recursive least squares method and a nonlinear PI controller is used to control pH systems based on the estimated two parameters.

  • PDF

Performance Assessment of Refrigerant Vapor-Pressure Equations with Two Adjustable Parameters (두 개의 가변 변수가 있는 냉매 증기압 상관식의 성능 평가)

  • Park, Kyoung-Kuhn
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.129-135
    • /
    • 2012
  • Performance of various temperature-dependent vapor-pressure equations with two adjustable parameters is assessed. These are Antoine, Miller, Zia-Thodos, Mejbri-Bellagi and other 10 equations. The equations are fitted to correlate the data from NIST Chemistry WebBook for 43 pure substance refrigerants from the critical point to the triple point. It was found that the Mejbri-Bellagi equation yields the lowest average absolute deviation of 0.37% compared with that of 0.58% of the Miller equation which is known to give better fit to experimental data than the Antoine equation(1.42%) does.

Protein Adsorption on Ion Exchange Resin: Estimation of Equilibrium Isotherm Parameters from Batch Kinetic Data

  • Chu K.H.;Hashim M.A.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm - the saturation capacity, or $q_m$, and the dissociation constant, $K_d$ - are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimating $q_m$ and $K_d$ for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters ($q_m,\;K_d$, and a rate constant), was fitted to a single kinetic profile. The value of $q_m$ determined as the result of this approach was quantitatively consistent with the $q_m$ value derived from the traditional batch equilibrium data. However, the $K_d$ value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.

Model Predictive Control for Productions Systems Based on Max-plus Algebra

  • Hiroyuki, Goto;Shiro, Masuda;Kazuhiro, Takeyasu;Takashi, Amemiya
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • Among the state-space description of discrete vent systems, the max-plus algebra is known as one of the effective approach. This paper proposes a model predictive control (MPC) design method based on the max-plus algebra. Several studies related to these topics have been done so far under the constraints that system parameters are constant. However, in practical systems such as production systems, it is common and sometimes inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable ones, and they are solved by a linear programing method. Since MPC determines optimal control input considering future reference signals, the controller can be more robust and the operation cost can be reduced. Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the proposed method is verified through a numerical simulation.

Parameters Influencing the Performance of Ant Algorithms Applied to Optimisation of Buffer Size in Manufacturing

  • Becker, Matthias;Szczerbicka, Helena
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.2
    • /
    • pp.184-191
    • /
    • 2005
  • In this article we study the feasibility of the Ant Colony Optimisation (ACO) algorithm for finding optimal Kanban allocations in Kanban systems represented by Stochastic Petri Net (SPN) models. Like other optimisation algorithms inspired by nature, such as Simulated Annealing/Genetic Algorithms, the ACO algorithm contains a large number of adjustable parameters. Thus we study the influence of the parameters on performance of ACO on the Kanban allocation problem, and identify the most important parameters.

Analytical Potential Energy Surfaces for the Four-center Elimination Feaction of HCI from 1,1-Dechlorethylene: Translational Energy Release from Classical Trajectory Studies

  • Lee, Bong U;Lee, Chang Hwan;Kim, Hong Rae
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.7
    • /
    • pp.727-733
    • /
    • 2000
  • Analytical potential energy surfaces have been constructed for the four-center elimination of HCI from 1,1-dichloroethylene.The potential functions are Morse-type functions which are modified by appropriate switching and attenuating functions with adjustable parameters. The parameters have been found by fitting the calculated vibrational frequencies, reaction endothermicity, equlibrium geometries of the reactant and products to those of experiments and ab initio calculations. The translational energy release obtained from classical trajectory calculations on this surface is in good agreement with the experiment.

Optimization of Extended UNIQUAC Parameter for Activity Coefficients of Ions of an Electrolyte System using Genetic Algorithms

  • Hashemi, Seyed Hossein;Dehghani, Seyed Ali Mousavi;Khodadadi, Abdolhamid;Dinmohammad, Mahmood;Hosseini, Seyed Mohsen;Hashemi, Seyed Abdolrasoul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.652-659
    • /
    • 2017
  • In the present research, in order to predict activity coefficient of inorganic ions in electrolyte solution of a petroleum system, we studied 13 components in the electrolyte solution, including $H_2O$, $CO_2$ (aq), $H^+$, $Na^+$, $Ba^{2+}$, $Ca^{2+}$, $Sr^{2+}$, $Mg^{2+}$, $SO_4$, $CO_3$, $OH^-$, $Cl^-$, and $HCO_3$. To predict the activity coefficient of the components of the petroleum system (a solid/liquid equilibrium system), activity coefficient model of Extended UNIQUAC was studied, along with its adjustable parameters optimized based on a genetic algorithm. The total calculated error associated with optimizing the adjustable parameters of Extended UNIQUAC model considering the 13 components under study at three temperature levels (298.15, 323.15, and 373.15 K) using the genetic algorithm is found to be 0.07.