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Abstract. Among the state-space description of discrete event systems, the max-plus algebra is known as one of
the effective approach. This paper proposes a model predictive control (MPC) design method based on the
max-plus algebra. Several studies related to these topics have been done so far under the constraints that system
parameters are constant. However, in practical systems such as production systems, it is common and sometimes
inevitable that system parameters vary by each event. Therefore, it is of worth to design a new MPC controller
taking account of adjustable system parameters. In this paper, we formulate system parameters as adjustable
ones, and they are solved by a linear programming method. Since MPC determines optimal control input
considering future reference signals, the controller can be more robust and the operation cost can be reduced.
Finally, the proposed method is applied to a production system with three machines, and the effectiveness of the
proposed method is verified through a numerical simulation.
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1. INTRODUCTION

The max-plus linear (MPL) system is one group of
the studying method for system representation and
controller design of discrete event systems (Cohen ef al.,
1989; Baccelli et al., 1992; Boimond and Ferrier, 1996;
Schutter and Boom, 2001; Boom and Schutter, 2001;
Suzuki and Masuda, 1998).

Max-plus algebra is an algebra in which max
operation is addition and plus operation is multiplication.
It has some same operation rules as satisfies in the usual
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algebra. Using an independent variable called an event
counter in linear state-space representation model, transi-
tions of events in the linear state-space are described.
Concerning with MPL systems, Internal Model Control
(IMC) (Boimond and Ferrier, 1996; Suzuki and Masuda,
1998) and Model Predictive Control are studied in recent
years.

In the past papers related to these topics, studies are
done under the constraints that system parameters are
constants. However, in practical systems, to change or
adjust system parameters is common and sometimes
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inevitable. For example, production system of assembly
line or batch processing line produces multiple kinds of
products on the same equipments, and the processing
times differ by each kind. This means that the system
parameters (processing times) are dependent upon the
event counter (production No.). Furthermore, there is a
case to adjust the number of working members according
to the volume of order. In such case, the processing times
differ by the number of workers. This means that the
system parameters are adjustable.

Therefore, the approach proposed by Masuda ez al.
(2003) is useful for expanding the application field of
MPL systems. However, the inverse system of Masuda et
al. (2003) has cases that the system parameters vary
abruptly. This is because the control inputs are determined
under restrictions that the corresponding outputs should
be equal or less than to the desired reference signal.
Moreover, the system parameters are considered to be a
kind of constant and not explicitly to be adjustable.

In this paper, we propose a MPC design method in
MPL systems with adjustable parameters by expanding
the method of (Masuda ef al., 2003). Using MPC, moderate
changes of the system parameters can be accomplished by
foreseeing the former event, and the outputs are within the
desired reference signal. Moreover, a control method can
be obtained at the lower cost. As the systems parameters
are defined as to depend upon the event counter, the
adjustment of system parameters can be done freely.

Generally, the design approach of MPC consists of
the following steps.

1) Introducing output prediction equation using a
model of controlled system

2) Dctermining optimal control law based on
prediction equation

3) Applying Receding Horizon method

As a whole, the same procedures described above
can be adopted in MPL systems. However, as the optimal
contro] law 2) cannot be formulated like the conven-
tional(+, X) operation, control methods peculiar to the
max-plus algebra should be constructed. Schutter and
Boom (2001), Boom and Schutter (2001) propose some
ideas by utilizing the solution of Extended Linear
Complementary Problem (ELCP), but it is difficult to
extend them to the subjects of adjustable parameters we
are going to handle. Hence, in this paper, we utilize the
calculation method of the greatest subsolution derived in
(Masuda ef al., 2003) after we show that the prediction
equation can be expressed as linear summation function of
adjustable parameters.

The outline of this paper is as follows:

Section 2 gives the mathematical preliminaries.
Section 3 represents a MPL system that depends on the
event counter. Introducing a modeling example of
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production system, we show that it is suitable to assume
that systems parameters are dependent upon the event
counter. Section 4 introduces a MPC control law for MPL
system, which depends on the event counter. We show
that the prediction equation can be expressed as a linear
summation function of the adjustable parameters, and then
we utilize the calculation method of the greatest
subsolution derived in (Masuda er al., 2003). Section 5
proposes an adjusting method of the systems parameters
after verifying that the constraints on system matrices are
reduced to a linear programming problem. Section 6
shows a result of numerical simulation. Finally, section 7
gives concluding remarks.

2. MATHEMATICAL PRELIMINARIES

The basic operations of max-plus algebra are denoted
by @ and ® for addition and multiplication, which are
defined as follows.

x®y=max(x, y), x®y=x+y 1)

where R, = Ru{-}, and R stands for the real field. Let ¢
be defined as —oo, which is a neutral element of the
addition &, and let ¢ defined as 0, which is a neutral
element of the multiplication &.

The following two operators are also defined.

xXAy=min(x, y), x\y=-x+y

Operations to multiple numbers are defined as follows.
When m < n, then

"
g%,‘h =a,®a,, ® ®a,=mx(a,,a,.,.~,a,) )

.
®q, =a,®a,, ® ®a,=a,+d,, ++a, 3)
k=m

L{\ a,=a, AQ,, A--Aa,=min (am’ [CPNEIA an) (4)
The above operations are extended to matrix calcula-
tions whose elements belong to R..

mxn

For instance, in A,Be R,"™",

[A®B], =14], ® [B], = max({4],, [B], ) )

[4 AB], =141, A[B], =min([A],, [B],) (6)
1<i<m, 1< j<n

where [-], stands for the element of the i-th row, j-th
column of the matrix. [-]<y>mn) stands for the element of
the /-th row, J-th column block of the block matrix and its
size is m X n. For simplicity, (m#r) might be suppressed.

When, Ae R.,", Be R,"", then

1
[aeB], =@ (14, o181, )=k£r:?x[([A],A +1,) (D



Model Predictive Control for Productions Systems Based on Max-plus Algebra 3

[aeB] = Q([A]U \[B1, )=k in}}q{(—[A],, +(B),) ®

1sism, 15 jsp

Eqgs. (2)-(4) are analogically extended to the opera-
tions of matrices using Eqs. (5) and (7). Neutral elements
of addition and multiplication of matrices are represented
as follows.

mxn

& 1 All elements are in &, € R,

e, : Only diagonal elements are ¢ and all other elements
are € ine,eR""

IfdeR., Ac R, then
[d®a] =de®a], 9)

Ifa.beR,", a<bimplics [a], < [b], for all (1 <i<n)

3. PRODUCTION SYSTEMS BASED ON
MAX-PLUS ALGEBRA

The state-space representation for discrete event
systems based on max-plus algebra, which is similar to
the traditional one for linear continuous-time systems, is
described in the following way (Baccelli ef al., 1992):

xtk+1) = Ax(k)®Bu(k+1) (10)
y(k)y=Cx(k) (]])

where k is the event counter, which means the number of
event occurrence from initial state. x(k)e R,", u(k)e R,”
and y(k)e R are state variables, control inputs and con
trolled outputs, respectively, Ae R,”", Be R,""and Ce R.*"
are matrices which depend upon the structure of systems,

Past researches handled systems parameters as
constants. In practical systems, as there are cases that the
processing times vary by each event, it would be better to
treat systems parameters as variables dependent upon the
cvent counter.

In Masuda et al. (2003), application scope is expanded
to the case that the systems parameters are adjustable, but
it cannot be applied to the case that they change by each
event. Hence, this paper regards them as variables depen-
dent upon the event counter £, and let system matrices be
denoted by Ay, B, and Cy. Then, Egs. (10) and (11) will be
expressed as

x(k+1)= A, x(k) ® B u(k +1) (12)

y(k)=C, x(k) (13)

As an example, let us consider a two-input one-
output production system depicted in Figure 1. This produc-

parts flow
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Figure 1. Two-inputs and one-output production system

»

tion system processes two pieces of parts, produces one
processed part, and then sends to the next production line.
Machine 1, machine 2 process parts in d, d» time for
each, and send them to machine 3. Machine 3 processes
parts in ¢s time and send it to the next production line.

Set,
(k) : time for k-th parts to put to machine 1
ua(k) : time for k-th parts to put to machine 2
y(k) : time for machine 3 to output processed parts
x1(k) : time to start processing -th parts in machine 1
x2(k) : time to start processing -th parts in machine 2
x3(k): time to start processing k-th parts in machine 3

(k) and wx(k) are inputs to the system, y(k) is
output of the system, x(k), x2(k) and x3(k) are internal
state of the system.

There are the following constraints on these variables.

« Machine 1 and 2 can not start processing until former
parts complete processing and next parts being inputted

» Machine 3 can not start processing until former parts
complete processing and receive next parts from
machine 1 and 2

which are described as

x,(k +1) = max {x, (k) +d, (k), u,(k+1)} (14)
xy(k+1) = max{x, (k) +d, (), u, (k+1)} (15)
X (k+1) = max {y(k), x, () +d, (k), x, (k) +d, (K)}  (16)
y(k) = x; (k) +d (k) )

As these equations are expressed by max operation
and addition operation, they are represented by the
max-plus algebra. Set,

d, (k) £ £
A, = € d, (k) £ (18)
| di(K)d (k+]) d,(k)d,(k+1) dy(k)

e £
B, =| = e (19)
d,(k+1) dy(k+1)

(=le & dy] (20)
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x(k)=[x (k) x,(k) x &I (21
y(k) =[y(k)Y (22)
u(ky=[u,(k) u, (k)" (23)

Eqgs. (14)-(17) can be described in the forms of Eqgs.
(12) and (13). It is easily verified that 4, B, and C} include
the systems parameters and are dependent upon the event
counter.

4. MPC FOR PRODUCTION SYSTEMS

This section introduces a MPC framework for produc-
tion systems based on max-plus algebra. First, a prediction
equation is derived, and then a method for determining the
optimal control inputs is developed.

4.1 Derivation of output prediction equation

The prediction equations on £ +1, -+, £+ N step can
be obtained by using Eq. (12) iteratively.

x(k+1) = A x())®B, u(k+])

xk+2) = A A x(k)

@A B, uk+D)® B, u(k+2)

: (24)
x(k+N)

i

A A x(R)
DA p B, uk +1)@ -
@B, uk+N)

Multiplying Ci.), *++, Cisy on both sides of Eq. (24),
and utilizing Eq. (13), Eq. (24) can be expressed as

Y(k+1) =T x(k)® 4Uk+1) (25)
where

yk+1)
y(k+2)

u(k +1)

u(k+2)

Y(k+1)= Uk+1) = (26)

yk+N) | u(k +N)
Ci4
C...A LA
re= @7

c

,
x
rd
.
5
T
=
n
S
5

CMBA TR -
C.AnB, M
o . (28)

—IAAL IBA CA

CA+NAL+N

When the desired reference signals are set as
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rlk+1) vk +i)
S (k+i

rin=| "] =" )
rek+N) r(k+i)

Optimal control inputs can be obtained by solving U (k+1)
in the following equation.

R(k+1)= T x(k)® 4,U (k+1) (30)

This paper gives a solution to this problem by
utilizing the calculation method of the greatest subsolu-
tion derived in {Cohen et al., 1989).

For preparation, the following section shows that the
system matrices can be represented as linear summation
function of the sysiem parameters.

4.2 Linear summation representation of system
matrix

Although the system matrices Egs. (18)-(20) depend
upon the event counter &, which means the parts number,
the positions of ¢ and d(k) do not depend upon k.
Therefore, Egs. (18)-(20) can be represented as linear
summation function of d,(k) dependent upon £ and matrices
inherent in the system independent of £.

They are represented as

L, Ly
4 =@ @oa B=Dfy s

. (31)
¢, =®sq @,

where d; denotes a vector whose elements consist of e and
the systems parameters included in Ay By and C.
fa, @), f5,d) and Sc,@i) represent linear functions of
elements of di. A, B; and C; have only ¢ and e in their
elements, and their size arc equal to A4, B and C,
respectively.

For example, By in Eq. (19) can be expressed as

e € e € £ ¢
B, =e& e|®d(k+e ¢ ®d,(k+D|e ¢ (32)
€ ¢ e € € e
where
Lg=3

dy =le, dy(k), dy(k), d3 (k), dy (k +1), d (k + 1))
fo @)= f5,d)=d\(k+1), fg (d)=dy(k+1)

Let the next Theorem be derived in order to verify
that £« and 4 in Egs. (27) and (28) can be expressed by
the linear summation function of the parameter d{(k).
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Theorem 1. When X € R and Y € RI™ can be ex-
pressed as linear summation finction of the parameter
d(k), XY can also be expressed as linear summation
function of the parameter d(k).

Proof. X and Y are represented as

Ly L
X= (—Dl fyd )X, Y= ]€~)l Fy @y Y,
1= : £

Here, X,, Y, is the same size matrix as X, ¥, and d;, , d;,
is the vector with the parameter element included in X and
Y for each. fy (d; ) and fy (d; ) are the linear functions
which have d; and 4,

As distributive law holds in the max-plus algebra,
XY can be represented as

in their elements respectively.

L, L,
XY = G—?(-le,(, @, ) fy @,)XY,
=1 4=

L,
:1(—:B|fz'(d"\’d‘7 )Z, L =Ly Ly

Here Z; is a matrix m X i in size, and has only ¢ and
e in its elements.

In the max-plus algebra, as multiplication is equivalent
to addition in ( +, X)) operation,

Sz dy .d, )= [y @y, )fy, @)

is a linear function in (+, X) operation which has 4,
and d iy in the elements. [

Using Theorem 1 iteratively, also using linear function
Sr, (), fa, ©) in (+, X) operation, the block matrices of
Eqs. (27) and (28) can be represented as

I
lr ]«.I]> (qn) :CM{E}?AEELJ

Lr
:@frl (d/\ ’dA+I"” 'dA+N) F,,

L.=L.-L,", I=1- N

1-J
[AA ]<ll>(qp) = CK+I[@AA+I—: JEA+I—I

Ly (34)
=§fA, di.d; e dy) 4,

L=L.-L,""L,, 1,J=1,--N, I>J

They are also linear summations represented by
d,(k). Note that I'y and 4, have the elements consisted
of only ¢ and e and their sizes are g¢Xn, ¢Xp,
respectively.

Theorem 2. /n, X & R’V when X € R 151
<N, 1 J<M, X is represented as a linear summation
Sunction of X iy, X can also be expressed as a linear
summation function of d,(k).

Proof. Using X's (/, J) block element X ., X can be
represented as

X = lC-D@E X_,.E! (35)
1=l
where
Ejunwm - €lement of /-th column : e,
else D Em
E i pxm - €lement of J-th column : e,
else L Emm

As X.;» can be expressed as the linear summation
function of d,(k), using linear function f<-,(-) under (+,
X ) operation, X<y> can be expressed as

L
<IJ> G:-) <II>[(d )XIJI (36)
X has only ¢ and e in the elements, and is m X # in

size. Therefore, utilizing the distributive law, X can be
represented as

N M L
X (_B (_Bf<ll>[ (dk )E1X<I.I>[EJT
I=1 4=l 1=|
p 37)
:®flr(dA)Z/r H=N-M-L

Jr=]

where Z;, is the same size as X and has ecand e in its
elements, fi(d,) is a linear function under (+, X) opera-
tion which is composed of the element of d;. Con-
sequently, X is expressed as a linear summation function of
di(k). 11

Using Eqgs. (33), (34) and Theorem 2, I';and 4; can

be expressed as a linear summation function of d,(k) and
are represented in the following way.

L
r5 =§f,(dk’dk+|""’

d T
L+N) 1 (38)
Lo=Lo-L)-N
Ly
Agzlc_zalgl(dA’dA+|"“’dA+N)Al
L.-L""L,-N (39)
o L Ly N-(N+1)
L,= >

I'; and 4, have only gand e in the elements, and
their sizes are the same with I' and A4, respectively,
where fi(+) and g/ (-) are linear functions under (+, X)
operation.
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4.3 Definition of control inputs using the
greatest subsolution

Optimal control inputs for the system can be
obtained by solving U(k+1) which satisfies Eq. (30).
Here, we utilize the greatest subsolution introduced in
Cohen et al. (1989) afier transforming Eq. (30).

Firstly, we transform the output prediction equation
Eq. (30) into

AU+ =Rk +1)® I, x(k) (40)

This transformation can be justified by the following

reason (Cohen et al., 1989).

1) Case of R(k+1)> I'y x(k)
Eq. (30) is equivalent to R(k+1) =4, U(k+1).

2) Caseof R(k+1)< I't x(k)
Since exact solution of Eq. (30) does not exist, U(k+1)
will be determined by getting the maximum solution
by which the values of the both sides of Eq. (30) do
not change.
Consequently, I't x(k) =A4; U(k+1) should be solved.

Concerning with 1) and 2), it follows that getting the
desired input of Eq. (30) can be reduced to Eq. (40).

Eq. (40) is a linear equation of U(k+1) in the
max-plus algebra. As 4 can be expressed as a linear
summation function of d,(k) in Eq. (39), the following
formula of the greatest subsolution can be utilized, which
is derived in (Masuda et al., 2003).

When, M, e R, ze R],ve R, the greatest subsolu-
tion 7 of linear equation

e

Zzl/i\l(M,TOV)

(41)

is given by
(42)
Using this formula, the greatest subsolution of Eq.

(40) can be expressed as

Ly
Uk+1) = l/=\l{gl(dk’dl\+lv"’ N RS

ORK+D®T, x(K)}

(43)

The greatest subsolution has the property that when
the correct solution of Eq. (40) is available, the exact
solution can be obtained, and when the correct solution of
Eq. (40) is not available, the maximum solution, which
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does not exceed the value of the right hand side, can be
obtained.

The example of the production system depicted in
Figure 1 is the problem to determine parts input times u(k + i)
$0 as to be just in time for the predetermined due date r
(k+1i). When the processing completes on the due date,
U (k+ 1) indicates the times of input. Otherwise, it follows
the latest inputting time within the due date.

* In the inverse system, each input is determined only
by considering the corresponding due date. In MPC, the
inputs are determined by considering the further finishing
time of parts, and then they can accomplish the output
times with less delay.

Using the Receding Horizon method in MPC, the
control input will be given only by the element of the first
block (1-P column) of Eq. (43) such as

u(k+1)=[ep,8pp,---,8pp]U(k+l) 44)

Thus, feedback control can be realized using the

current outputs result.

5. ADJUSTMENT OF PARAMETERS

This section gives an adjustment method of parameters
when the systems parameter d, is adjustable as for the
control inputs given in Eqgs. (43) and (44).

The objective of the control is to determine the
outputs, which do not exceed the desired reference signal,
and simultaneously to reduce the operating cost of the
system. Masuda et al. (2003) gives a method by adjusting
the system parameters in accordance with

(r x@®), s[RKk+D), i=1..,q-N (45)

Hereafter, an adjusting method of d; will be

formulated considering the constraints of Eq. (45).

5.1 Constraints on parameter

This subsection considers constraints on the system
parameter d,(k).
As processing times take non-negative values,
d(k+j)20 i=1-,h, j=1,-,N (46)
should be satisfied.
Next, we consider Eq. (45). Multiplying x(k) on both
sides of Eq. (38), the following equation holds.

[l d, - d ) M x] <[RK+1]
{[=1,--,Lr, i=1,,¢-N

(47)
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where fi(+) is a linear function under (+, X ) operation. As
x(k) is known, [Ix(k)], becomes constant, and
consequently Eq. (47) can be expressed as

Ppldy diy dy) Snlk+ )

Jmbe N, 1=t 98

i=1.q,

As ¢,(") includes the parameter d; as multipli-

cation in the max-plus algebra, it is reduced to linear
constraints under (+, X) operation.

When the state variables are larger than R(k-+1),
parameters d.(k+j) which satisfy Eq. (48) cannot be
obtained. Hence, the constraints should be relaxed. Using
slack variables ,, the inequalities are transformed into

Oud,d g, endy ) Srk+)+p,

j=l N, I=1u, Ly (49)

l:]’...,q’

Adding slack variables, a solution can be found even
when the outputs exceed the desired reference signal.

5.2 Decreasing calculation load using Control
Horizon

Eq. (48) indicates that the number of unknown variables
(system parameter included in ¢,,(-)) grows large in
proportion to the prediction step N, and the calculation
volume becomes huge. Therefore, we consider decreasing
the calculation load by introducing the Control Horizon.

The Control Horizon method is a technique to
shorten the caleulation time by reducing unknown variables.
Supposing that the systems parameters are the same at the
further step than a certain N.(<N). The number of
unknown variables can be decreased accordingly, and
d,(k+j) can be set as

dk+j) j=1-N,

d(k+N,) j=N +1- N (59)

d,(k+j):{

5.3 Criteria function

A criteria function in the linear programming is
defined considering both the operation cost of the system
and the penalty of errors. The error is defined as a
difference between the actual output and the desired
reference signal. In the previous production system, they
correspond to the processing cost and the delay from due
date.

Firstly, we consider the processing cost. The con-
straints given in Eq. (45) can be achieved by decreasing
the value of d;, which means a shortening of the processing
time. However, as the smaller system parameters imposes

higher operation cost, we set an objective function as

h

N,
P==3 Y 0,dk+))
1=

=] y

a,>0 Sy
when d, becomes smaller, the penalty grows large.

Next, we consider the output error. In Eq. (49), the
slack variables are appended to get a solution even when
output dates exceed the due dates. As for this delay, the
penalty is burdened as

N g
B=-22PM g 5o (52)

J=1 =1

Using Eqgs. (51) and (52), a general criteria function
for the system is given by

P=P+P; (53)

From above equations, solving d is reduced to linear
programming, which minimizes Eq. (53) under the
constraints of Eqs. (45) and (46).

In this way, the optimization problem is formulated,
which considers both the system operating cost and
capability to follow the desired reference signal.

6. NUMERICAL SIMULATION

In order to confirm the effectiveness of this proposed
control law, this section shows a numerical simulation of
two-inputs one-output production system (Figure 1).

We set the desired reference signal as

Fk)=rk—=1+1.5 k=215 r(1)=0
rky=rtk-=1+0.6 k=16,..,20 (54)
riky=rtk-D+1.2 k=21,...,35

Initial values and the lowest values of the system
parameters, control horizon, and coefficients of the
objective function are set as follows.

d()=d,(D=d;(1)=1.5
d),d,(,d;()20.8, k=2,--.35 (55)
N.=1loy, =100, =3.0,05, =50

Concemning Egs. (54) and (55), the reference signals
for 16 <k <20 exceeds the maximum ability (minimum
value of the system parameters) of the machines.

Figure 2 shows the processing time of each part at
machine | for the prediction step N=1, 5, 10, 15. N=1 is
equivalent to the inverse system. N=1 makes the processing
ability to the maximum 0.8 at step £=17. On the other
hand, the profiles for N >>1 are different from that of N=1.
For instance, N=5 considers the future schedules, and
then shortens the processing time at the earlier step.
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Dutput Error (=1, B)
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Figure 3 shows the processing time of each part at
machine 2 for the prediction step N=1, 5, 10, 15. Changes
of the processing times have the same behavior to
machine 1.

Figure 4 shows the processing time of each part at
machine 3 for the prediction step N=1, 5, 10, 15. Although

Figure 3. System parameter o for N=1 (o), N=5(x),  the behavior is similar to machine 1 and 2, a response to
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the reduction of desired signal can be seen in the one step
earlier. This may be caused by the location of machine 3,
which is placed in downstream compared with machine |
and 2.

Figure 5 shows the deviation of the actual finishing
time from the due date. Recall that the interval of the
desired signals is decreased from step k=16. While N=1
causes output delays from step k=16, N=5 reduces the
systems parameters from step k=12, and complete
processing earlier than the reference signal. As a result,
the delays can be avoided. =10 and N=15 also make
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While the processing cost keeps nearly constant in 1
<N <14, it can be reduced for N> 15 . When N is small,
delays of completion can be reduced by increasing M.
Furthermore, when N is sufficiently large, the cost
reduction can be accomplished. From these matters, it
follows that the prediction step N contributes in getting
outputs within the reference signals and in minimizing the
value of criteria function.

From above results, our proposed method determines
the optimal control inputs considering both the due date
and the cost. Moreover, it realizes desirable control
properties that the conventional inverse system or the
other ideas using fixed parameters cannot achieve.

7. CONCLUDING REMARKS

In this paper, we introduce a MPC framework for the
production systems in which the system parameters
depend upon the event counter, and propose a method to
give optimal input parameters.

In the past studies of MPC using the max-plus
algebra, only the cases that system parameters are constant
were handled.

After considering how to represent the system
matrices as lincar summation function of the parameters,
we give a method to obtain the optimal inputs using the
greatest subsolution. In addition, we make a consideration
of the case that the input parameters are adjustable and
show that the adjustment method is reduced to a linear
programming problem.

Furthermore, we demonstrate that MPC contributes
the cost reduction through a numerical simulation.

As an application of this proposed method in this
paper, a scheduling algorithm of a production system is
examined, where the system parameters can be determined
continuously. Therefore, if we would like to apply to
business applications such as workforce assignment,
considering discrete system parameters would be better.
The expansion for this viewpoint is an issue for the future.
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