Protein Adsorption on Ion Exchange Resin: Estimation of Equilibrium Isotherm Parameters from Batch Kinetic Data

  • Chu K.H. (Department of Chemical and Process Engineering, University of Canterbury) ;
  • Hashim M.A. (Department of Chemical Engineering, University of Malaya)
  • Published : 2006.01.01

Abstract

The simple Langmuir isotherm is frequently employed to describe the equilibrium behavior of protein adsorption on a wide variety of adsorbents. The two adjustable parameters of the Langmuir isotherm - the saturation capacity, or $q_m$, and the dissociation constant, $K_d$ - are usually estimated by fitting the isotherm equation to the equilibrium data acquired from batch equilibration experiments. In this study, we have evaluated the possibility of estimating $q_m$ and $K_d$ for the adsorption of bovine serum albumin to a cation exchanger using batch kinetic data. A rate model predicated on the kinetic form of the Langmuir isotherm, with three adjustable parameters ($q_m,\;K_d$, and a rate constant), was fitted to a single kinetic profile. The value of $q_m$ determined as the result of this approach was quantitatively consistent with the $q_m$ value derived from the traditional batch equilibrium data. However, the $K_d$ value could not be retrieved from the kinetic profile, as the model fit proved insensitive to this parameter. Sensitivity analysis provided significant insight into the identifiability of the three model parameters.

Keywords

References

  1. Lyddiatt, A. (2002) Process chromatography: current constraints and future options for the adsorptive recovery of bioproducts. Curr. Opin. Biotechnol. 13: 95-103 https://doi.org/10.1016/S0958-1669(02)00293-8
  2. Chang, C. and A. M. Lenhoff (1998) Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. J. Chromatogr. A 827: 281- 293 https://doi.org/10.1016/S0021-9673(98)00796-1
  3. DePhillips, P. and A. M. Lenhoff (2001) Determinants of protein retention characteristics on cation-exchange adsorbents. J. Chromatogr. A 933: 57-72 https://doi.org/10.1016/S0021-9673(01)01275-4
  4. Staby, A., I. H. Jensen, and I. Mollerup (2000) Comparison of chromatographic ion-exchange resins. I. Strong anion exchange resins. J. Chromatogr. A 897: 99-111 https://doi.org/10.1016/S0021-9673(00)00780-9
  5. Staby, A. and I. H. Jensen (2001) Comparison of chromatographic ion-exchange resins. II. More strong anion exchange resins. J. Chromatogr. A 908: 149-161 https://doi.org/10.1016/S0021-9673(00)00999-7
  6. Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2004) Comparison of chromatographic ionexchange resins. III. Strong cation-exchange resins. J. Chromatogr. A 1034: 85-97 https://doi.org/10.1016/j.chroma.2004.01.026
  7. Staby, A., M.-B. Sand, R. G. Hansen, J. H. Jacobsen, L. A. Andersen, M. Gerstenberg, U. K. Bruus, and I. H. Jensen (2005) Comparison of chromatographic ion-exchange resins. IV. Strong and weak cation-exchange resins and heparin resins. J. Chromatogr. A 1069: 65-77 https://doi.org/10.1016/j.chroma.2004.11.094
  8. Habbaba, M. M. and K. O. Ulgen (1997) Analysis of protein adsorption to ion exchangers in a finite bath. J. Chem. Technol. Biotechnol. 69: 405-414 https://doi.org/10.1002/(SICI)1097-4660(199708)69:4<405::AID-JCTB729>3.0.CO;2-G
  9. Wright, P. R., F. J. Muzzio, and B. J. Glasser (1998) Batch uptake of lysozyme: effect of solution viscosity and mass transfer on adsorption. Biotechnol. Prog. 14: 913-921 https://doi.org/10.1021/bp980086o
  10. Conder, J. R. and B. O. Hayek (2000) Adsorption kinetics and equilibria of bovine serum albumin on rigid ionexchange and hydrophobic interaction chromatography matrices in a stirred cell. Biochem. Eng. J. 6: 215-223 https://doi.org/10.1016/S1369-703X(00)00091-7
  11. Zhou, X., B. Xue, S. Bai, and Y. Sun (2002) Macroporous polymeric ion-exchanger of high capacity for protein adsorption. Biochem. Eng. J. 11: 13-17 https://doi.org/10.1016/S1369-703X(02)00007-4
  12. Yao, S. J., Y. X. Guan, and L. H. Yu (2003) Adsorption performance of proteins to CM Sepharose FF and DEAE Sepharose FF adsorbents. Kor. J. Chem. Eng. 20: 93-98 https://doi.org/10.1007/BF02697191
  13. Bosma, J. C. and J. A. Wesselingh (2004) Available area isotherm. AIChE J. 50: 848-853 https://doi.org/10.1002/aic.10080
  14. Shen, H. and D. D. Frey (2005) Effect of charge regulation on steric mass-action equilibrium for the ionexchange adsorption of proteins. J. Chromatogr. A 1079: 92-104 https://doi.org/10.1016/j.chroma.2005.02.086
  15. Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica, and platinum. J. Am. Chem. Soc. 40: 1361-1403 https://doi.org/10.1021/ja02242a004
  16. de Vasconcellos, J. F. V., A. J. Silva Neto, C. C. Santana, and F. J. C. P. Soeiro (2002) Parameter estimation in solid-liquid adsorption with a stochastic global optimization method. Proceedings of the 4th International Conference on Inverse Problems in Engineering. May 26-31. Rio de Janeiro, Brazil
  17. Horstmann, B. J., C. N. Kenney, and H. A. Chase (1986) Adsorption of proteins on Sepharose affinity adsorbents of varying particle size. J. Chromatogr. 361: 179-190 https://doi.org/10.1016/S0021-9673(01)86905-3
  18. Lesins, V. and E. Ruckenstein (1988) Patch controlled attractive electrostatic interactions between similarly charged proteins and adsorbents. Colloid Polym. Sci. 266: 1187-1190 https://doi.org/10.1007/BF01414409
  19. Beck, J. V. and K. J. Arnold (1977) Parameter Estimation in Engineering and Science. Wiley, New York, USA
  20. Smith, W. R. and R. W. Missen (2003) Sensitivity analysis in ChE education: Part 1. Introduction and application to explicit models. Chem. Eng. Educ. 37: 222-227
  21. Whitley, R. D., J. M. Brown, N. P. Karajgikar, and N.-H. L. Wang (1989) Determination of ion exchange equilibrium parameters of amino acid and protein systems by an impulse response technique. J. Chromatogr. 483: 263-287 https://doi.org/10.1016/S0021-9673(01)93127-9