DOI QR코드

DOI QR Code

Validity of the Analytic Expression for the Temperature of Joule Heated Nano-wire

  • Published : 2007.03.31

Abstract

We confirm the validity of the analytic expression for the temperature of the Joule heated nano-wire [C.-Y. You et al. Appl. Phys. Lett. 89, 222513 (2006)] with finite element method. The temperature of the Joule heated nano-wire is essential information for the research of the current induced domain wall movement. The analytic expression includes an adjustable parameter which must be determined. Since the physical origin of the adjustable parameter is simplification of the heat source profile, the validity of the analytic expression must be examined for wide range of the nano-wire structure. By comparison with this analytic expression with the results of full numerical finite element method, the adjustable parameter has been determined. The numerically confirmed adjustable parameter values are in the range of 0.60$\sim$0.69, which is well matched with the theoretically expected one. Furthermore, it is found that the adjustable parameter is a slow varying function of the nano-wire geometry. Based on this numerical confirmation, we can apply the analytic expression for the wide range of the nano-wire geometry with proper adjustable parameters.

Keywords

References

  1. J. C. Sloncziwski, J. Magn. Magn. Mater. 159, L1 (1996)
  2. L. Berger, J. Appl. Phys. 49, 2156 (1978)
  3. L. Berger, Phys. Rev. B 54, 9353 (1996)
  4. M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, M. Seck, V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998)
  5. S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature 425, 380 (2003) https://doi.org/10.1038/425003a
  6. J. Z. Suna, D. J. Monsmab, T. S. Kuan, M. J. Rooks, D. W. Abraham, B. Oezyilmaz, A. D. and Kent, R. H. Koch, J. Appl. Phys. 93, 6859 (2003)
  7. J. Y. Lee, S. Choi, and S.-K. Kim, J. of Magnetics 11, 74 (2006) https://doi.org/10.4283/JMAG.2006.11.2.074
  8. M. Hosomi, H. Yamagishi, T. Yamamoto, K. Bessho, Y. Higo, K. Yamane, H. Yamada, M. Shoji, H. Hachino, C. Fukumoto, H. Nagao, and H. Kano, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International 2005, 4 (2005)
  9. S. S. P. Parkin, U. S. patent 6834005 (2003)
  10. E. Saitoh, H. Miyahima, T. Yamaoka, and G. Tatara, Nature 432, 203 (2004) https://doi.org/10.1038/432004a
  11. A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004)
  12. M. Klaui, et al. Phys. Rev. Lett. 94, 106601 (2003)
  13. Z. Li and S. Zhang, Phys. Rev. B 70, 024417 (2004)
  14. S. Zhang and Z. Li, Phys. Rev. Lett. 93, 127204 (2004)
  15. A. Yamaguchi, S. Nasu, H. Tanigawa, T. Ono, K. Miyake,K. Mibu, and T. Shinjo, Appl. Phys. Lett. 86, 012511 (2005)
  16. C.-Y. You, I. M. Sung, and B.-K. Joe, Appl. Phys. Lett. 89, 222513 (2006)
  17. http://www.comsol.com
  18. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, 2nd ed. (Clarendon, Oxford, 1959)
  19. J. V. Beck, K. D. Cole, A. Haji-Sheikh, and B. Litkouhi, Heat Conduction Using Green's Functions (Hemisphere, Washington, DC, 1992)

Cited by

  1. Effect of the thermal conductivity of substrate on the temperature of nanowire for current induced domain wall motion vol.204, pp.12, 2007, https://doi.org/10.1002/pssa.200777268
  2. Synthesis and Magnetorheological Characterization of Magnetite Nanoparticle and Poly(Vinyl Butyral) Composite vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018612
  3. Magnetorheological Characteristics of Polymer Coated Magnetite Particle Composites With Carbon Nanotube Nanohybrid vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018674
  4. Fabrication of Carbonyl Iron Embedded Polycarbonate Composite Particles and Magnetorheological Characterization vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018677