• Title/Summary/Keyword: accurate solution

Search Result 1,207, Processing Time 0.024 seconds

An Efficient and Accurate Method for Calculating Nonlinear Diffraction Beam Fields

  • Jeong, Hyunjo;Cho, Sungjong;Nam, Kiwoong;Lee, Janghyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.2
    • /
    • pp.102-111
    • /
    • 2016
  • This study develops an efficient and accurate method for calculating nonlinear diffraction beam fields propagating in fluids or solids. The Westervelt equation and quasilinear theory, from which the integral solutions for the fundamental and second harmonics can be obtained, are first considered. A computationally efficient method is then developed using a multi-Gaussian beam (MGB) model that easily separates the diffraction effects from the plane wave solution. The MGB models provide accurate beam fields when compared with the integral solutions for a number of transmitter-receiver geometries. These models can also serve as fast, powerful modeling tools for many nonlinear acoustics applications, especially in making diffraction corrections for the nonlinearity parameter determination, because of their computational efficiency and accuracy.

SIF AND FINITE ELEMENT SOLUTIONS FOR CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.623-632
    • /
    • 2018
  • In [7, 8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. Their algorithm involves an iteration and the iteration number depends on the acuracy of stress intensity factors, which is usually obtained by extraction formula which use the finite element solutions computed by standard Finite Element Method. In this paper we investigate the dependence of the iteration number on the convergence of stress intensity factors and give a way to reduce the iteration number, together with some numerical experiments.

THE SINGULARITIES FOR BIHARMONIC PROBLEM WITH CORNER SINGULARITIES

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.36 no.5
    • /
    • pp.583-591
    • /
    • 2020
  • In [8, 9] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with corner singularities, compute the finite element solutions using standard Finite Element Methods and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. The error analysis was given in [5]. In their approaches, the singular functions and the extraction formula which give the stress intensity factor are the basic elements. In this paper we consider the biharmonic problems with the cramped and/or simply supported boundary conditions and get the singular functions and its duals and find properties of them, which are the cornerstones of the approaches of [8, 9, 10].

A FAST AND ACCURATE NUMERICAL METHOD FOR MEDICAL IMAGE SEGMENTATION

  • Li, Yibao;Kim, Jun-Seok
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.201-210
    • /
    • 2010
  • We propose a new robust and accurate method for the numerical solution of medical image segmentation. The modified Allen-Cahn equation is used to model the boundaries of the image regions. Its numerical algorithm is based on operator splitting techniques. In the first step of the splitting scheme, we implicitly solve the heat equation with the variable diffusive coefficient and a source term. Then, in the second step, using a closed-form solution for the nonlinear equation, we get an analytic solution. We overcome the time step constraint associated with most numerical implementations of geometric active contours. We demonstrate performance of the proposed image segmentation algorithm on several artificial as well as real image examples.

Nonlinear vibration of conservative oscillator's using analytical approaches

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.671-682
    • /
    • 2016
  • In this paper, a new analytical approach has been presented for solving nonlinear conservative oscillators. Variational approach leads us to high accurate solution with only one iteration. Two different high nonlinear examples are also presented to show the application and accuracy of the presented approach. The results are compared with numerical solution using runge-kutta algorithm in different figures and tables. It has been shown that the variatioanl approach doesn't need any small perturbation and is accurate for nonlinear conservative equations.

Blending Surface Modelling Using Sixth Order PDEs

  • You, L.H.;Zhang, Jian J.
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.157-166
    • /
    • 2006
  • In order to model blending surfaces with curvature continuity, in this paper we apply sixth order partial differential equations (PDEs), which are solved with a composite power series based method. The proposed composite power series based approach meets boundary conditions exactly, minimises the errors of the PDEs, and creates almost as accurate blending surfaces as those from the closed form solution that is the most accurate but achievable only for some simple blending problems. Since only a few unknown constants are involved, the proposed method is comparable with the closed form solution in terms of computational efficiency. Moreover, it can be used to construct 3- or 4-sided patches through the satisfaction of continuities along all edges of the patches. Therefore, the developed method is simpler and more efficient than numerical methods, more powerful than the analytical methods, and can be implemented into an effective tool for the generation and manipulation of complex free-form surfaces.

Exact mathematical solution for free vibration of thick laminated plates

  • Dalir, Mohammad Asadi;Shooshtari, Alireza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.835-854
    • /
    • 2015
  • In this paper, the modified form of shear deformation plate theories is proposed. First, the displacement field geometry of classical and the first order shear deformation theories are compared with each other. Using this comparison shows that there is a kinematic relation among independent variables of the first order shear deformation theory. So, the modified forms of rotation functions in shear deformation theories are proposed. Governing equations for rectangular and circular thick laminated plates, having been analyzed numerically so far, are solved by method of separation of variables. Natural frequencies and mode shapes of the plate are determined. The results of the present method are compared with those of previously published papers with good agreement obtained. Efficiency, simplicity and excellent results of this method are extensible to a wide range of similar problems. Accurate solution for governing equations of thick composite plates has been made possible for the first time.

Accurate periodic solution for non-linear vibration of dynamical equations

  • Pakar, Iman;Bayat, Mahmoud;Bayat, Mahdi
    • Earthquakes and Structures
    • /
    • v.7 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • In this paper we consider three different cases and we apply Variational Approach (VA) to solve the non-natural vibrations and oscillations. The method variational approach does not demand small perturbation and with only one iteration can lead to high accurate solution of the problem. Some patterns are presented for these three different cease to show the accuracy and effectiveness of the method. The results are compared with numerical solution using Runge-kutta's algorithm and another approximate method using energy balance method. It has been established that the variational approach can be an effective mathematical tool for solving conservative nonlinear dynamical equations.

SINGULAR AND DUAL SINGULAR FUNCTIONS FOR PARTIAL DIFFERENTIAL EQUATION WITH AN INPUT FUNCTION IN H1(Ω)

  • Woo, Gyungsoo;Kim, Seokchan
    • East Asian mathematical journal
    • /
    • v.38 no.5
    • /
    • pp.603-610
    • /
    • 2022
  • In [6, 7] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities. They consider the Poisson equations with homogeneous boundary conditions, compute the finite element solutions using standard FEM and use the extraction formula to compute the stress intensity factor(s), then they posed new PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor(s), which converges with optimal speed. From the solution they could get an accurate solution just by adding the singular part. They considered a partial differential equation with the input function f ∈ L2(Ω). In this paper we consider a PDE with the input function f ∈ H1(Ω) and find the corresponding singular and dual singular functions. We also induce the corresponding extraction formula which are the basic element for the approach.

Natural Frequencies of Beams with Step Change in Cross-Section

  • Kim, Yong-Cheul;Nam, Alexander-V.
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2004
  • Natural frequencies of the transverse vibration of beams with step change in cross-section are obtained by using the asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying properties, such as mass, cross-section, tension etc., along the beam length. However, this solution is found to be still very accurate even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering problems.