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ABSTRACT: Natural frequencies of the transverse vibration of beams with step change in cross-section are obtained by using the
asymptotic closed form solution. This closed form solution is found by using WKB method under the assumption of slowly varying
properties, such as mass, cross-section, ftension efc., along the beam length. However, this solution is found to be still very accurate
even in the case of large variation in cross-section and tension. Therefore, this result can be easily applied to many engineering

problems.

1. Introduction

Modern industries extensively use beams with variable
properties in many structures and machineries for different
purposes. The analytic solutions for the transverse vibration
of the Euler-Bernoulli Beam with constant properties are
well known in the literature. However, the closed form
solutions for the variable properties along it's length, such
as variable cross-section, tension, mass etc., have not been
available until the author Kim(1983) found asymptotic closed
form solutions by WKB method and published in the
papers, (Kim and Triantafyllou, 1984). The validity of these
solutions is based on the assumption of slowly varying
properties along the beam length. However, these solutions
were found to be very accurate though the variation of
tension was large (Kim, 1988). In the limit when the
variation goes to zero, these asymptotic solutions become
exact solutions.

Brief reviews on the vibration of beams with step changes
in cross-section are as follows:

The frequency equation of a simply supported stepped
beam was deduced by Levinson(1976). Jang and Bert (1989)
derived the frequency equations for all combinations of
boundary conditions in the form of fourth order determinant
equated to zero. The finite element method and commercial
code were used to obtain the natural frequencies of a beam
with circular cross-section.

Naguleswaran(2002) published a paper for the natural
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frequencies of beams with step changes in cross-section

subject to different boundary conditions, he used the
analytic solution for the constant cross-section in each
segment and imposed compatibility conditions at the

junction points.

Also, Naguleswaran(2002) presented a scheme to derive
frequency equation and obtain natural frequencies and mode
shape for all
conditions by using bisection method. The first three

combinations of the classical boundary

frequencies and sensitivity of the frequency parameters were
tabulated for several combinations of system parameters. The
results were extended for the beams with up to three step
changes in cross-section.

In the present paper the first three natural frequencies of
circular bipinned beam with one step change in cross-section
are tabulated for the The
frequencies are obtained by using the asymptotic closed

different beam parameters.

form solutions for the large variation case, such as step
change in cross-section. As a result these solutions are still
found to be very accurate even for the case of step change
in cross-section and can be easily applied to many beam
vibration problems.

2. Asymptotic solution by WKB method

In general, the WKB method can be effectively used to
find the solutions for the slowly varying coefficients in the
differential equation. Kim(1983)
closed form solution by using coordinate transformation and
WKB method and published in the paper, (Kim, 1988). The
governing equation and the asymptotic solution for the

obtained the asymptotic
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transverse vibration of the beam with variable properties are
a: follows:

o -
axz[El(x) n [T( ) ]+ m(0) =55 atz )

where El is bending rigidity, T is tension, m is mass per
length and W is
introducing  the

unit transverse  displacement. By

non-dimensional quantities, which are

dufined in Appendix, the equation becomes
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After the separation of variables Y(s,7)= R(s)H(7), the

equation (2) can be reduced to
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An asymptotic closed-form solution of the above equation is
ohtained as follows:

R(s)=T\(s) [ c,sin{ fo Sh2d5}+ Czcos{ fo Shzdé}]

+ Tz(s)[C;,sinh{ fo Sh]d5}+ C4cosh{ fo Shldé}] )

where C,C,C,C; are constants

non-dimensional  displacement

and R(s), s are
coordinate,
respectively, and  7',(s), Ty(s), ki(s), hy(s) are assumed to

and axial
b slowly varymng quantities and defined in the Appendix
A In order te find natural frequencies of a beams, the
tollowing boundary conditions can be considered.

3. Frequency equations and Mode Shapes

3.1 Simply Supported Beams

The simply supported boundary conditions are

R(0)=FR"(0:=R(1)=FR"(1)=0, 6)
where a prime denotes a derivative with respect to s.

By substituting (5) into (6),
asymptotic formulas to predict natural frequencies and mode

the following simple,

snapes of the beam can be obtained:

(-4 () Y

2

~dE=nnr,
n=1,2,... )

In dimensional form,

T~ )+ 4 (L + 420
n=1,2,... (8

Mode shapes are

UAzn

Rl [-4(8): 1 () +-Lia) o

Furthermore, the orthonormal characteristic functions become

sinf [ ~1(2) + 4 (12) +4-%2 4

ER A SI_1(@), 1/(Q), U4
fOU(s)sinz{fU\/—j( p)+7\/( p) +4 p”d}ds
(10)
3.2 Fixed—Fixed beams
The boundary conditions are
R0)=R(0)=R(1)=FR(1)=0, (11)

The natural frequencies and mode shapes in this case can
be obtained by solving

detM ,_ =0 (12)
where matrix M . _ . is defined in the Appendix.
3.3 Free—Free Beams

The corresponding boundary conditions are given by

RI(O=R"(0)=R"(1)=R"(1)=0 (13)
Similarly, the characteristic equation becomes

detM ,,_,=0 (14)
3.4 Sliding—Sliding Beams

The boundary conditions are

RO=R"(0)=R(1=R"(1)=0 (15)

The characteristic equation becomes

detM ,_,=0 (16)
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4. Natural Frequencies of stepped beams

The Euler-Bernoulli

cross-section at x= AL is considered as shown in Fig.l. The

beam with one step change in

step location divides the beam into two sections with
flexural rigidities EI,, EI,, mass per unit length m, m,
and Jengths, AL, (1— A)L, respectively.

A W(xt)

El,m, AL

El, m, (1 =X)L

]
— >

x

Fig. 1 The beam with one-step change in cross-section

In the case of step change in cross-section, Kx) and
m(x) become step functions
[ I, if 0<x<AL
I(x)_{ I, if AL<x<L, (17)
[ my if 0<x<AL
m(x)_[ my, if AL<x<L, (18)
The equation of motion becomes
9L ( ~l> 19
pw EIx) + m(x) 2L 01‘2 19)

After
Appendix A, the governing equation becomes

introducing non-dimensional quantities as in

292X )+ uiyLY = (20)
ds® os” 6t2
The non-dimensionalized frequencies a; @, flexural

rigidity ratio

defined as follows

d ) m1L4

¢ and mass per unit length ratio y are

@*mylt 1/4
=N "m,

_EL _ my
R, @
After the separation of variables Y(s, )= R(s)H(7),

asymptotic solution for R(s) is

R(s)= T(s)[Clsin( fo *1W(8)d8) + C,cos( fo W &dE)

+ Cysinh( ' &de) + Cycosh( [ Sh(s)dé)] )
where
Ay
=i El ] } ®)
o) (- ) B @

The detailed derivation can be found in Kim(1983). To
obtain frequency equation, the boundary conditions must be
imposed, then general expression of frequency equation
becomes in the following form.

TXHO) T2 (DA™ (0)h" (1)D(B, B, B3 By =0, (25)

where D is a function of B| B, B; B,. The form of D
depends on the combination of boundary conditions. » and
n are overall ranks of boundary conditions. All possible
combinations of boundary conditions have been solved. The
result is shown in Table 1. In the case of simply supported
beam with circular cross-section the equation (25) becomes

0 1 0 1
2 2 2 2 0 -1 0 1
T0)T* (DA (0)A° (1) B, B, B, B,
—-B, —B, Bs B4
=—T*0)T*(DK*(0)A*(1)4B,B;=0 (26)

Table 1 D function for the various combination of boundary

conditions.
D | clamped (cl) | pinned (pn) | sliding (sl) free (fr)
cl 2—2B,B, 2B,B,—2B,B; | 2B,B;+2B,B, 2+2B,B,
pn | 2B,B,—2B,B, —4B, B, —4B,B, 2B,B,—2B,B,
sl | ~2B,B,—2B,B, —4B,B, 4B,B, 2B,B;+2B, B,
fr 2+2B,B, 2B,B,—2B,B, | —2B,B;—2B,B,| 2—2B,B,

In general, terms T°%(0), T%(1), #*(0), #*(1) are not equal

to zero. Hence the equation above is reduced to

4sin( fo lh(E)dé)sinh( fo lh(é)ds) =

or in dimensional form

27)
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1
LL{%%)Z‘} 4”‘*:"7&":1,2,.-. (28)

After solving the equation the analytical expression for
natural frequencies becomes

(29)

e

The integration has been done by using the fact of jump

Tha- »[ 21"

i1 values of functions m(x),[x) at step location. The
analytical expression for non-dimensional frequency of first
section is shown as follows

, n=1,2,... (30)

@, =

at () "a-n

The ratio —"f depends on type of the cross-section. In the

case of circular cross-section g=d? and (=d*, where d
tienotes the ratio between dimensions of the first and
second sections. Hence, equation (30) becomes

o Nd
a, =nrw RESESE n=1,2,... (31)
Note that 7=1 or A=1 means no step change in

cross-section. In such cases (31) becomes #m, exact natural
ordinary Euler-Bernoulli
without step change in cross section. The frequency «, is

frequencies for bipinned beam

the function of d,4, the parameters of step change. The
dependency factor @

Vd

ald, )= (Va—1Di+1

carries the distortion due to step change. @ is an increasing
function when ¢ and A are increasing. @ is a convex

function with respect to ¢ and concave with respect to A.

_da da ., 0% 2°a
d>0, oA >0, o <0, PYD >0.

with property «(1,A) = a(d,1)=1.
To estimate the accuracy of the asymptotic solution, the
results are compared with the numerical scheme suggested

in Naguleswaran(2002). For the first three natural frequencies
@, the error is less 5% when d and A are close to 1

Error has tendency to decrease when A goes to one or
zero.

The first three natural frequencies of the circular bipinned
beam are tabulated in Table 2, 3, 4.

The frequencies for another types of cross section can be
found by using the same procedure. However, only four
combinations of the sliding and pinned boundary conditions
allows to obtain analytical expression for natural frequencies
in a form of

a,=fn)

L . n=1,2,...

a+ () Ta-»

where —ii can be expressed in terms of 4 and depends on

type of cross-section.
5. Conclusions

The first three natural frequencies of circular bipinned
beam with one step change in cross-section are tabulated for
the different beam parameters. The frequency equations for
all combinations of the boundary conditions were derived
and analytical expressions for frequencies for the several
boundary conditions have been obtained. The frequencies
were compared with exact values which were calculated
numerically. The error is found to be very small for the
step parameters closed to unity. As a result, the asymptotic
solution is found to be very accurate even for the case of
step change in cross-section and can be easily applied to
many beam vibration problem.
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Appendix

The non-dimensional quantities are defined by

Eyl
= wyt, wy= M(‘]]/Iﬂ = DW:

x
s=-,
A

L=

-

where subscript A is a
characteristic length (e.g. the transverse wave length) and
D, is the effective diameter of the beam (or the width of

the beam). For simplicity A is chosen to be equal to L.

(0 denotes the reference section,

e

The non-dimensional parameters are given by

2
P(S)z%%l,Q(s)zﬂ%L,U(s):%i, aA,= @,
040 [vadl) 0

wy *

[—%(%)+2M+ {(9) +a-ta2) M] o
[

g

B, = sin folhz(é)df

B,= cos folhz(é) dé
1

B;— sinh fo (&) de

1
B,= coshfo 1y (&) dé

fo—/x:

0 TH0)
T(0) p(0) 0
Ty (1) B, T,(1) B, B

Ty Bahy1) —Tz(l)Blhz(l) T(l)B4h(1) T(l)B3h(1)

0 TI(O)
TI(O) £,(0)

Mfr—/r=
0 — Ty(0) #*(0) 0 T,(0) #*,(0)
— T5(0) Koy 0 T,(0) #*(0) 0
= T,(1) #%,(1)B, —T,(1) ¥, (1)B, T,(1) ¥* (1)B; T,(1) #* (1)B,
~T,(1) B,(1)B, THX1) K,(LVB, T\(1) #,(1)B, T« & (DB,
Msl* N
Ty (0, (0) 0 (D&, (0) 0
— T,(0) #%(0) 0 7,0y B (0)

0
ToDBy k(1) = Ty(1)B k(1)  Ty(1)Byh(1)  T\(D)Bk(1)
— T,(1) B, (1B, T, #,(1)B, T,(1) ¥, (1)B, T,(1) k*,(1)Bs

Table 2 First natural frequency, values in the brackets are

obtained numerically by the method in
Naguleswaran(2002)
parameters| d=0.6 d=0.7 d=0.8 d=0.9
248958 2.67209 2.83991 2.99575
A=0.1 ]| (243032) | (2.62749) | (2.81015) | (2.98093)
2.54835 271721 2.87054 3.01128
A=10.2 | (241581) | (2.62439) | (2.81307) | (2.98491)
2.60995 2.76388 290183 3.02698
A=0.3 | (240171) | (2.628) (2.82505) | (2.99575)
2.67461 281218 293382 3.04284
A=0.4 | (241113) | (2.65253) | (2.85321) | (3.01548)
2.74256 28622 2.96652 3.05886
A=10.5 ] (246385) | (270984) | (2.90175) (3.0436)
2.81404 291403 2.99995 3.07506
A=0.6 | (257431) | (2.80532) | (2.9688) (3.07642)
2.88936 296777 3.03415 3.09143
A=0.7 | (274929 | (2.93169) | (3.04321) (3.1074)
2.96881 3.02354 3.06914 3.10797
A=0.8 | (296226) | (3.05632) | (3.10486) | (3.12964)
3.05276 3.08143 3.10494 3.12469
A=0.9 | (311245) | (3.1287) (3.1363) (3.13994)
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Table 3 Second natural frequency, values in the brackets are

51

Table 4 Third natural frequency, values in the brackets are

in

obtained  numerically by the method in obtained  numerically by the method
Naguleswaran(2002) Naguleswaran(2002)
parameters| d=0.6 d=0.7 d=0.8 d=0.9 parameters| d=0.6 =0.7 d=0.8 d=0.9
497917 | 5.34418 5.67982 5.9915 746875 | 8.01627 851972 8.98725
A=0.1 | 484919) | (5.25288) | (5.62302) | (5.96528) A=0.1 ] (7.26884) | (7.88511) | (8.44478) (8.9564)
5.0967 5.43442 5.74107 6.02256 764505 | 8.15163 8.61161 9.03385
A=0.2 | 484702) | (5.2813) | (5.66245) | (5.99541) A=0.2 | (743005) | (8.04598) | (8.57842) | (9.03442)
5.21991 5.52776 5.80366 6.05395 7.82986 8.29164 8.7055 9.08093
A=0.3 | (5003) 1 (542352) | (5.77206) | (6.05503) A=0.3 | (7.8924) | (838315 | (8.77205) | (9.10767)
5.34923 5.62436 5.86764 6.08567 8.02384 8.43654 8.80146 9.12851
A=0.4 | 533044) | (5.66434) | (5.91521) | (6.11238) A=0.4 | (8.24199) | (851639) | (8.80478) | (9.11326)
548512 5.7244 5.93304 611772 8.22767 8.5866 8.89955 9.17659
A=10.5 | (5.70034) | (5.86601) | (5.99871) | (6.13384) A=0.5 | (8.06323) | (845112) | (8.82986) | (9.15867)
5.62809 | 5.82806 5.99991 615012 844213 | 8.74209 8.99986 9.22517
A=0.6 | (5.79468) | (5.87534) | (5.99178) | (6.13308) A=0.6 | (831736) | (8.74393) | (9.0394) (9.25151)
5.77871 5.93555 6.06831 6.18285 8.66807 | 8.90332 9.10246 9.27428
A=0.7 | 564702) | (581714) | (5.99599) | (6.1561) A=0.7 | (89247) | (9.03501) | (9.14458) | (9.27505)
593762 | 6.04707 6.13828 6.2159%4 890643 | 9.07061 9.20742 9.32391
A=0.8 | (5.67329) | (5.92397) | (6.10281) | (6.21677) A=0.8 | (8.80347) | (8.95981) | (9.13535) | (9.29677)
610552 | 6.16287 6.20989 6.24938 9.15828 9.2443 9.31483 9.37407
A=0.9 | 6.09087) | (6.19492) | (6.24587) | (6.27117) A=0.9 | (897144) | (919497) | (9.32173) | (9.38999)
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