• 제목/요약/키워드: accretive

Search Result 75, Processing Time 0.025 seconds

FUZZY NONLINEAR RANDOM VARIATIONAL INCLUSION PROBLEMS INVOLVING ORDERED RME-MULTIVALUED MAPPING IN BANACH SPACES

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • In this paper, we consider a fuzzy nonlinear random variational inclusion problems involving ordered RME-multivalued mapping in ordered Banach spaces. By using the random relaxed resolvent operator and its properties, we suggest an random iterative algorithm. Finally both the existence of the random solution of the original problem and the convergence of the random iterative sequences generated by random algorithm are proved.

A NECESSARY AND SUFFICIENT CONDITION FOR THE CONVERGENCE OF THE MANN SEQUENCE FOR A CLASS OF NONLINEAR OPERATORS

  • Chidume, C.E.;Nnoli, B.V.C.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.269-276
    • /
    • 2002
  • Let E be a real Banach space. Let T : E longrightarrow E be a map with F(T) : = { x $\in$ E : Tx = x} $\neq$ 0 and satisfying the accretive-type condition $\lambda\$\mid$x-Tx\$\mid$^2$, for all $x\inE,\;x^*\inf(T)\;and\;\lambda >0$. We prove some necessary and sufficient conditions for the convergence of the Mann iterative sequence to a fixed point of T.

EXISTENCE OF SOLUTION OF NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS IN GENERAL BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.1003-1013
    • /
    • 1996
  • The existence of a bounded generalized solution on the real line for a nonlinear functional evolution problem of the type $$ (FDE) x'(t) + A(t,x_t)x(t) \ni 0, t \in R $$ in a general Banach spaces is considered. It is shown that (FDE) has a bounded generalized solution on the whole real line with well-known Crandall and Pazy's result and recent results of the functional differential equations involving the operator A(t).

  • PDF

CONVERGENCE OF AN ITERATIVE ALGORITHM FOR SYSTEMS OF GENERALIZED VARIATIONAL INEQUALITIES

  • Jeong, Jae Ug
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.213-222
    • /
    • 2013
  • In this paper, we introduce and consider a new system of generalized variational inequalities involving five different operators. Using the sunny nonexpansive retraction technique we suggest and analyze some new explicit iterative methods for this system of variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.

STRONG CONVERGENCE OF AN ITERATIVE ALGORITHM FOR A MODIFIED SYSTEM OF VARIATIONAL INEQUALITIES AND A FINITE FAMILY OF NONEXPANSIVE MAPPINGS IN BANACH SPACES

  • JEONG, JAE UG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, a new iterative scheme based on the extra-gradient-like method for finding a common element of the set of fixed points of a finite family of nonexpansive mappings and the set of solutions of modified variational inequalities in Banach spaces. A strong convergence theorem for this iterative scheme in Banach spaces is established. Our results extend recent results announced by many others.

ITERATIVE ALGORITHMS FOR A SYSTEM OF RANDOM NONLINEAR EQUATIONS WITH FUZZY MAPPINGS

  • Kim, Jong Kyu;Salahuddin, Salahuddin
    • East Asian mathematical journal
    • /
    • v.34 no.3
    • /
    • pp.265-285
    • /
    • 2018
  • The main purpose of this paper, by using the resolvent operator technique associated with randomly (A, ${\eta}$, m)-accretive operator is to establish an existence and convergence theorem for a class of system of random nonlinear equations with fuzzy mappings in Banach spaces. Our works are improvements and generalizations of the corresponding well-known results.

A SYSTEM OF PARAMETRIC GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS IN $L_p$ SPACES

  • Jeong, Jae-Ug
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.493-506
    • /
    • 2005
  • In this paper, we study the behavior and sensitivity analysis of the solution set for a system of parametric generalized nonlinear mixed quasi-variational inclusions in Banach spaces. By using some new and innovative technique, existence theorem for the system of parametric generalized nonlinear mixed quasi-variational inclusions in $L_p(p\ge2$ spaces is established. Our results improve the known result of Agarwal et al.[1].

ABSTRACT FUNCTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES

  • Jeong, Jin-Gyo;Shin, Ki-Yeon
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.501-503
    • /
    • 1997
  • The existence of a unique local generalized solution for the abstract functional evolution problem of the type $$ (FDE:\phi) x'(t) + A(t, x_t)x(t) \ni G(t, x_t), t \in [0, T], x_0 = \phi $$ in a general Banach spaces is considered. It is shown that $(FDE:\phi)$ could be considered with well-known fixed point theory and recent results for the functional differential equations involving the operator A(t).

  • PDF