• 제목/요약/키워드: abelian group

검색결과 153건 처리시간 0.02초

SEVERAL STABILITY PROBLEMS OF A QUADRATIC FUNCTIONAL EQUATION

  • Cho, In-Goo;Koh, Hee-Jeong
    • 대한수학회논문집
    • /
    • 제26권1호
    • /
    • pp.99-113
    • /
    • 2011
  • In this paper, we investigate the stability using shadowing property in Abelian metric group and the generalized Hyers-Ulam-Rassias stability in Banach spaces of a quadratic functional equation, $f(x_1+x_2+x_3+x_4)+f(-x_1+x_2-x_3+x_4)+f(-x_1+x_2+x_3)+f(-x_2+x_3+x_4)+f(-x_3+x_4+x_1)+f(-x_4+x_1+x_2)=5{\sum\limits_{i=1}^4}f(x_i)$. Also, we study the stability using the alternative fixed point theory of the functional equation in Banach spaces.

ON THE IDEAL CLASS GROUPS OF REAL ABELIAN FIELDS

  • Kim, Jae Moon
    • Korean Journal of Mathematics
    • /
    • 제4권1호
    • /
    • pp.45-49
    • /
    • 1996
  • Let $F_0$ be the maximal real subfield of $\mathbb{Q}({\zeta}_q+{\zeta}_q^{-1})$ and $F_{\infty}={\cup}_{n{\geq}0}F_n$ be its basic $\mathbb{Z}_p$-extension. Let $A_n$ be the Sylow $p$-subgroup of the ideal class group of $F_n$. The aim of this paper is to examine the injectivity of the natural $mapA_n{\rightarrow}A_m$ induced by the inclusion $F_n{\rightarrow}F_m$ when $m>n{\geq}0$. By using cyclotomic units of $F_n$ and by applying cohomology theory, one gets the following result: If $p$ does not divide the order of $A_1$, then $A_n{\rightarrow}A_m$ is injective for all $m>n{\geq}0$.

  • PDF

THAINE'S THEOREM IN FUNCTION FIELD

  • Jung, Hwanyup
    • 충청수학회지
    • /
    • 제22권1호
    • /
    • pp.17-23
    • /
    • 2009
  • Let F be a finite real abelian extension of a global function field k with G = Gal(F/k). Assume that F is an extension field of the Hilbert class field $K_e$ of k and is contained in a cyclotomic function field $K_n$. Let $\ell$ be any prime number not dividing $ph_k{\mid}G{\mid}$. In this paper, we show that if $\theta{\in}\mathbb{Z}[G]$ annihilates the Sylow $\ell$-subgroup of ${\mathcal{O}}^{\times}_F/{\mathcal{C}}_F$, then (q-1)$\theta$ annihilates the Sylow $\ell$-subgroup of ${\mathcal{Cl}}_F$.

  • PDF

A FINITE ADDITIVE SET OF IDEMPOTENTS IN RINGS

  • Han, Juncheol;Park, Sangwon
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.463-471
    • /
    • 2013
  • Let R be a ring with identity 1, $I(R){\neq}\{0\}$ be the set of all nonunit idempotents in R, and M(R) be the set of all primitive idempotents and 0 of R. We say that I(R) is additive if for all e, $f{\in}I(R)$ ($e{\neq}f$), $e+f{\in}I(R)$. In this paper, the following are shown: (1) I(R) is a finite additive set if and only if $M(R){\backslash}\{0\}$ is a complete set of primitive central idempotents, char(R) = 2 and every nonzero idempotent of R can be expressed as a sum of orthogonal primitive idempotents of R; (2) for a regular ring R such that I(R) is a finite additive set, if the multiplicative group of all units of R is abelian (resp. cyclic), then R is a commutative ring (resp. R is a finite direct product of finite field).

ZETA FUNCTIONS OF GRAPH BUNDLES

  • Feng, Rongquan;Kwak, Jin-Ho
    • 대한수학회지
    • /
    • 제43권6호
    • /
    • pp.1269-1287
    • /
    • 2006
  • As a continuation of computing the zeta function of a regular covering graph by Mizuno and Sato in [9], we derive in this paper computational formulae for the zeta functions of a graph bundle and of any (regular or irregular) covering of a graph. If the voltages to derive them lie in an abelian or dihedral group and its fibre is a regular graph, those formulae can be simplified. As a by-product, the zeta function of the cartesian product of a graph and a regular graph is obtained. The same work is also done for a discrete torus and for a discrete Klein bottle.

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).

Imaginary Bicyclic Biquadratic Number Fields with Class Number 5

  • Julius Magalona Basilla;Iana Angela Catindig Fajardo
    • Kyungpook Mathematical Journal
    • /
    • 제64권2호
    • /
    • pp.303-309
    • /
    • 2024
  • An imaginary bicyclic biquadratic number field K is a field of the form ${\mathbb{Q}}({\sqrt{-m}},{\sqrt{-n}})$ where m and n are squarefree positive integers. The ideal class number hK of K is the order of the abelian group IK/PK, where IK and PK are the groups of fractional and principal fractional ideals in the ring of integers 𝒪K of K, respectively. This provides a measure on how far is 𝒪K from being a PID. We determine all imaginary bicyclic biquadratic number fields with class number 5. We show there are exactly 243 such fields.

BOUNDED MOVEMENT OF GROUP ACTIONS

  • Kim, Pan-Soo
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제5권
    • /
    • pp.523-523
    • /
    • 1997
  • Suppose that G is a group of permutations of a set ${\Omega}$. For a finite subset ${\gamma}$of${\Omega}$, the movement of ${\gamma}$ under the action of G is defined as move(${\gamma}$):=$max\limits_{g{\epsilon}G}|{\Gamma}^{g}{\backslash}{\Gamma}|$, and ${\gamma}$ will be said to have restricted movement if move(${\gamma}$)<|${\gamma}$|. Moreover if, for an infinite subset ${\gamma}$of${\Omega}$, the sets|{\Gamma}^{g}{\backslash}{\Gamma}| are finite and bounded as g runs over all elements of G, then we may define move(${\gamma}$)in the same way as for finite subsets. If move(${\gamma}$)${\leq}$m for all ${\gamma}$${\subseteq}$${\Omega}$, then G is said to have bounded movement and the movement of G move(G) is defined as the maximum of move(${\gamma}$) over all subsets ${\gamma}$ of ${\Omega}$. Having bounded movement is a very strong restriction on a group, but it is natural to ask just which permutation groups have bounded movement m. If move(G)=m then clearly we may assume that G has no fixed points is${\Omega}$, and with this assumption it was shown in [4, Theorem 1]that the number t of G=orbits is at most 2m-1, each G-orbit has length at most 3m, and moreover|${\Omega}$|${\leq}$3m+t-1${\leq}$5m-2. Moreover it has recently been shown by P. S. Kim, J. R. Cho and C. E. Praeger in [1] that essentially the only examples with as many as 2m-1 orbits are elementary abelian 2-groups, and by A. Gardiner, A. Mann and C. E. Praeger in [2,3]that essentially the only transitive examples in a set of maximal size, namely 3m, are groups of exponent 3. (The only exceptions to these general statements occur for small values of m and are known explicitly.) Motivated by these results, we would decide what role if any is played by primes other that 2 and 3 for describing the structure of groups of bounded movement.

  • PDF

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • 대한수학회지
    • /
    • 제59권3호
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).