THAINE'S THEOREM IN FUNCTION FIELD

  • Jung, Hwanyup (Department of Mathematics Education, Chungbuk National University)
  • Received : 2008.11.28
  • Accepted : 2009.02.13
  • Published : 2009.03.31

Abstract

Let F be a finite real abelian extension of a global function field k with G = Gal(F/k). Assume that F is an extension field of the Hilbert class field $K_e$ of k and is contained in a cyclotomic function field $K_n$. Let $\ell$ be any prime number not dividing $ph_k{\mid}G{\mid}$. In this paper, we show that if $\theta{\in}\mathbb{Z}[G]$ annihilates the Sylow $\ell$-subgroup of ${\mathcal{O}}^{\times}_F/{\mathcal{C}}_F$, then (q-1)$\theta$ annihilates the Sylow $\ell$-subgroup of ${\mathcal{Cl}}_F$.

Keywords

References

  1. J. Ahn, S. Bae and H. Jung, Cyclotomic units and Stickelberger ideals of global function fields. Trans. Amer. Math. Soc. 355 (2003), 1803-1818. https://doi.org/10.1090/S0002-9947-03-03245-8
  2. D. Hayes, A brief introduction to Drinfeld modules. The arithmetic of function fields (Columbus, OH, 1991), 1-32.
  3. M. Rosen, Number theory in function fields. Graduate Texts in Mathematics, 210. Springer-Verlag, New York, 2002.
  4. F. Thaine, On the ideal class groups of real abelian number fields. Ann. of Math. (2) 128 (1988), 1-18. https://doi.org/10.2307/1971460
  5. L. Washington, Introduction to cyclotomic fields. Second edition. GTM 83. Springer-Verlag, New York, (1997).