• Title/Summary/Keyword: a linear theory

Search Result 2,015, Processing Time 0.027 seconds

Free vibration behavior of viscoelastic annular plates using first order shear deformation theory

  • Moshir, Saeed Khadem;Eipakchi, Hamidreza;Sohani, Fatemeh
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.607-618
    • /
    • 2017
  • In this paper, an analytical procedure based on the perturbation technique is presented to study the free vibrations of annular viscoelastic plates by considering the first order shear deformation theory as the displacement field. The viscoelastic properties obey the standard linear solid model. The equations of motion are extracted for small deflection assumption using the Hamilton's principle. These equations which are a system of partial differential equations with variable coefficients are solved analytically with the perturbation technique. By using a new variable change, the governing equations are converted to equations with constant coefficients which have the analytical solution and they are appropriate especially to study the sensitivity analysis. Also the natural frequencies are calculated using the classical plate theory and finite elements method. A parametric study is performed and the effects of geometry, material and boundary conditions are investigated on the vibrational behavior of the plate. The results show that the first order shear deformation theory results is more closer than to the finite elements with respect to the classical plate theory for viscoelastic plate. The more results are summarized in conclusion section.

WEAK SOLUTIONS FOR THE HAMILTONIAN BIFURCATION PROBLEM

  • Choi, Q-Heung;Jung, Tacksun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.667-680
    • /
    • 2016
  • We get a theorem which shows the multiple weak solutions for the bifurcation problem of the superquadratic nonlinear Hamiltonian system. We obtain this result by using the variational method, the critical point theory in terms of the $S^1$-invariant functions and the $S^1$-invariant linear subspaces.

AN ENERGY FUNCTION FOR TRANSVERSELY-ISOTROPIC ELASTIC MATERIAL AND THE PONYTING EFFECT

  • Akinola, Ade
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.873-884
    • /
    • 1999
  • On the basis of the semi-linear material of John invoking the theory of homogenization for heterogeneous media and the theory of invariants for isotropic scalar functions an energy function is built for a transversely-isotropic medium in finite elastic deformation. The ponyting Effect for material in simple shear is reviewed for this case of transversal isotropy. It is shown that this effect is apprehended by the constructed energy function.

The effect of sweep angle on the limit cycle oscillations of aircraft wings

  • Eken, Seher;Kaya, Metin Orhan
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.199-215
    • /
    • 2015
  • This study focuses on the limit cycle oscillations (LCOs) of cantilever swept-back wings containing a cubic nonlinearity in an incompressible flow. The governing aeroelastic equations of two degrees-of-freedom swept wings are derived through applying the strip theory and unsteady aerodynamics. In order to apply strip theory, mode shapes of the cantilever beam are used. The harmonic balance method is used to calculate the frequencies of LCOs. Linear flutter analysis is conducted for several values of sweep angles to obtain the flutter boundaries.

BIFURCATION PROBLEM FOR THE SUPERLINEAR ELLIPTIC OPERATOR

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2012
  • We investigate the number of solutions for the superlinear elliptic bifurcation problem with Dirichlet boundary condition. We get a theorem which shows the existence of at least $k$ weak solutions for the superlinear elliptic bifurcation problem with boundary value condition. We obtain this result by using the critical point theory induced from invariant linear subspace and the invariant functional.

SOME FREDHOLM THEORY RESULTS AROUND RELATIVE DEMICOMPACTNESS CONCEPT

  • Chaker, Wajdi;Jeribi, Aref;Krichen, Bilel
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.313-325
    • /
    • 2021
  • In this paper, we provide a characterization of upper semi-Fredholm operators via the relative demicompactness concept. The obtained results are used to investigate the stability of various essential spectra of closed linear operators under perturbations belonging to classes involving demicompact, as well as, relative demicompact operators.

A NOTE ON THE APPROXIMATE SOLUTIONS TO STOCHASTIC DIFFERENTIAL DELAY EQUATION

  • KIM, YOUNG-HO;PARK, CHAN-HO;BAE, MUN-JIN
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.421-434
    • /
    • 2016
  • The main aim of this paper is to discuss the difference between the Euler-Maruyama's approximate solutions and the accurate solution to stochastic differential delay equation. To make the theory more understandable, we impose the non-uniform Lipschitz condition and weakened linear growth condition. Furthermore, we give the pth moment continuous of the approximate solution for the delay equation.

ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS OF LINEAR IMPULSIVE DIFFERENTIAL EQUATIONS

  • Simeonov, P.S.;Bainov, D.D.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 1994
  • In the recent several years the theory of impulsive differential equations has made a rapid progress (see [1] and [2] and the references there). The questions of stability and periodicity of the solutions of these equations have been elaborated in sufficient details while their asymptotic behaviour has been little studied. In the present paper the asymptotic behaviour of the solutions of linear impulsive differential equations is investigated, generalizing the results of J. W. Macki and J.S. Muldowney, 1970 [3], related to ordinary differential equations without impulses.

  • PDF

Decentralized Output-feedback Stabilization of Linear Time-invariant Interconnected Systems with Delays

  • Shim, Duk-Sun
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.158-162
    • /
    • 1998
  • We study the decentralized stabilization problem of linear time-invariant large-scale interconnected systems with delays without any system structure. We obtain sufficient stability conditions for interconnected systems which are equivalent to disturbance attenuation of some scaled system. A decentralized output-feedback controller is obtained using standard H$\infty$ control theory. The obtained controller is delay-independent. We also obtain an observer for the interconnected system.

  • PDF