DOI QR코드

DOI QR Code

SOME FREDHOLM THEORY RESULTS AROUND RELATIVE DEMICOMPACTNESS CONCEPT

  • Chaker, Wajdi (Department of New Economy University of Sfax Higher Institute of Comercial Studies of Sfax) ;
  • Jeribi, Aref (Department of Mathematics University of Sfax Faculty of Sciences of Sfax) ;
  • Krichen, Bilel (Department of Mathematics University of Sfax Faculty of Sciences of Sfax)
  • Received : 2020.06.25
  • Accepted : 2020.11.19
  • Published : 2021.04.30

Abstract

In this paper, we provide a characterization of upper semi-Fredholm operators via the relative demicompactness concept. The obtained results are used to investigate the stability of various essential spectra of closed linear operators under perturbations belonging to classes involving demicompact, as well as, relative demicompact operators.

Keywords

References

  1. W. Y. Akashi, On the perturbation theory for Fredholm operators, Osaka J. Math. 21 (1984), no. 3, 603-612. http://projecteuclid.org/euclid.ojm/1200777440
  2. B. A. Barnes, Common operator properties of the linear operators RS and SR, Proc. Amer. Math. Soc. 126 (1998), no. 4, 1055-1061. https://doi.org/10.1090/S0002-9939-98-04218-X
  3. W. Chaker, A. Jeribi, and B. Krichen, Demicompact linear operators, essential spectrum and some perturbation results, Math. Nachr. 288 (2015), no. 13, 1476-1486. https://doi.org/10.1002/mana.201200007
  4. N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory, With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York, 1958.
  5. D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987.
  6. M. Faierman, R. Mennicken, and M. Moller, A boundary eigenvalue problem for a system of partial differential operators occurring in magnetohydrodynamics, Math. Nachr. 173 (1995), 141-167. https://doi.org/10.1002/mana.19951730110
  7. I. Gohberg, S. Goldberg, and M. A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, 49, Birkhauser Verlag, Basel, 1990. https://doi.org/10.1007/978-3-0348-7509-7
  8. A. Jeribi, Spectral theory and applications of linear operators and block operator matrices, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-17566-9
  9. A. Jeribi, N. Moalla, and S. Yengui, S-essential spectra and application to an example of transport operators, Math. Methods Appl. Sci. 37 (2014), no. 16, 2341-2353. https://doi.org/10.1002/mma.1564
  10. T. Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966.
  11. B. Krichen, Relative essential spectra involving relative demicompact unbounded linear operators, Acta Math. Sci. Ser. B (Engl. Ed.) 34 (2014), no. 2, 546-556. https://doi.org/10.1016/S0252-9602(14)60027-8
  12. B. Krichen and D. O'Regan, On the class of relatively weakly demicompact nonlinear operators, Fixed Point Theory 19 (2018), no. 2, 625-630. https://doi.org/10.24193/fpt-ro.2018.2.49
  13. C. Kuratowski, Sur les espaces complets, Fundamenta Mathematicae 1 (1930), no. 15, 301-309. https://doi.org/10.4064/fm-15-1-301-309
  14. M. Mokhtar-Kharroubi, Time asymptotic behaviour and compactness in transport theory, European J. Mech. B Fluids 11 (1992), no. 1, 39-68.
  15. W. V. Petryshyn, Construction of fixed points of demicompact mappings in Hilbert space, J. Math. Anal. Appl. 14 (1966), 276-284. https://doi.org/10.1016/0022-247X(66)90027-8
  16. W. V. Petryshyn, Remarks on condensing and k-set-contractive mappings, J. Math. Anal. Appl. 39 (1972), 717-741. https://doi.org/10.1016/0022-247X(72)90194-1
  17. C. Schmoeger, Common spectral properties of linear operators A and B such that ABA = A2 and BAB = B2, Publ. Inst. Math. (Beograd) (N.S.) 79(93) (2006), 109-114. https://doi.org/10.2298/PIM0693109S
  18. F. Wolf, On the invariance of the essential spectrum under a change of boundary conditions of partial differential boundary operators, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 142-147. https://doi.org/10.1016/S1385-7258(59)50016-5