• Title/Summary/Keyword: ZnO sensor

Search Result 221, Processing Time 0.032 seconds

Methane sensing characteristics and power consumption of MEMS gas sensor based on ZnO nanowhiskers (ZnO 나노휘스커 소재를 이용한 MEMS가스센서의 소비전력과 메탄 감응 특성 연구)

  • Moon, Hyung-Shin;Park, Sung-Hyun;Kim, Sung-Eun;Yu, Yun-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.462-468
    • /
    • 2010
  • A low power gas sensor with microheater was fabricated by MEMS technology. In order to heat up the gas sensing material to a operating temperature, a platinum(Pt) micro heater was built on to the micromachined Si substrate. The width and gap of microheater were $20\;{\mu}m$ and $4.5\;{\mu}m$, respectively. ZnO nanowhisker arrays were fabricated on a sensor device by hydrothermal method. The sensor device was deposited with ZnO seeds using PLD systems. A 200 ml aqueous solution of 0.1 mol zinc nitrate hexahydrate, 0.1 mol hexamethylenetetramine, and 0.02 mol polyethylenimine was used for growthing ZnO nanowhiskers. The power consumption to heat up the gas sensor to a operating temperature was measured and temperature distribution of sensor was analyzed by a Infrared Thermal Camera. The optimum temperature for highest sensitivity was found to be $250^{\circ}C$ although relatively high(64 %) sensitivity was obtained even at as low as $150^{\circ}C$. The power consumption was 72 mW at $250^{\circ}C$ and was only 25 mW at $150^{\circ}C$.

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics (NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석)

  • Son, Ju-Hyung;Kim, Hyun-Soo;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.188-192
    • /
    • 2018
  • In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

Highly sensitive xylene sensors using Fe2O3-ZnFe2O4 composite spheres

  • Chan, Jin Fang;Jeon, Jae Kyoung;Moon, Young Kook;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.191-195
    • /
    • 2021
  • Pure ZnFe2O4 and Fe2O3-ZnFe2O4 hetero-composite spheres were prepared by ultrasonic spray pyrolysis of a solution containing Zn- and Fe-nitrates. Additionally, the sensing characteristics of these spheres in the presence of 5 ppm ethanol, benzene, p-xylene, toluene, and CO (within the temperature range of 275-350 ℃) were investigated. The Fe2O3-ZnFe2O4 hetero-composite sensor with a cation ratio of [Zn]:[Fe]=1:3 exhibited a high response (resistance ratio = 140.2) and selectivity (response to p-xylene/response to ethanol = 3.4) to 5 ppm p-xylene at 300 ℃, whereas the pure ZnFe2O4 sensor showed a comparatively lower gas response and selectivity. The reasons for the superior response and selectivity to p-xylene in Fe2O3-ZnFe2O4 hetero-composite sensor were discussed in relation to the electronic sensitization due to charge transfer at Fe2O3-ZnFe2O4 interface and Fe2O3-induced catalytic promotion of gas sensing reaction. The sensor can be used to monitor harmful volatile organic compounds and indoor air pollutants.

The Analysis of NOx Gas Detection Characteristics for the Gas Sensor Using the MWCNT/ZnO Composites Film (MWCNT/ZnO 복합체 필름을 이용한 가스센서의 NOx가스 검출 특성 분석)

  • Kim, Hyun-Soo;Lee, Won-Jae;Park, Yong-Seo;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.312-316
    • /
    • 2016
  • In this study, we fabricated $NO_x$ gas sensor by using multi-walled carbon nanotubes(MWCNT)/zinc oxide(ZnO) composite film. Carbon nanotubes (CNTs) have good electronic, chemical-stability, and sensitivity characteristics. And zinc oxide (ZnO) is a wide band gap and large exciton binding energy semiconductor. In particular, gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_x$ gas for different values of the $NO_x$ gas concentrations. The gas sensor that absorbed$NO_x$ gas molecules showed a increasing in resistance. The sensitivity of the gas sensor was increased by increasing the gas concentrations. Additionally, while changing the temperature inside the chamber for the MWCNT/ZnO composite film gas sensor, we obtained the sensitivity. And the comparison analysis to ZnO film gas sensor for detecting $NO_x$ gas. From the experiment result, we confirmed improvement of $NO_x$ gas detection characteristics using the MWCNT/ZnO composite film.

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition (온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성)

  • Jung, Da-Woon;Kim, Kyoung-Won;Lee, Deuk-Hee;Debnath, Pulak Chandra;Kim, Sang-Sig;Lee, Sang-Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.594-598
    • /
    • 2011
  • We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.

Synthesis and Low-concentration (50 ppm) NO2 Sensing Properties of Bare and ZnO (n) Decorated TeO2 (p) Nanowires (ZnO가 첨가된 TeO2 나노와이어의 합성 및 저농도(50 ppm) 이산화질소 가스 센싱 특성)

  • Yu, Dong Jae;Shin, Ka Yoon;Oum, Wansik;Kang, Suk Woo;Kim, Eun Bi;Kim, Hyeong Min;Kim, Hyoun Woo
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.435-441
    • /
    • 2022
  • We report the synthesis and gas sensing properties of bare and ZnO decorated TeO2 nanowires (NWs). A catalyst assisted-vapor-liquid-solid (VLS) growth method was used to synthesize TeO2 NWs and ZnO decoration was performed using an Au-catalyst assisted-VLS growth method followed by a subsequent heat treatment. Structural and morphological analyses using X-ray diffraction (XRD) and scanning/transmission electron microscopies, respectively, demonstrated the formation of bare and ZnO decorated TeO2 NWs with desired phase and morphology. NO2 gas sensing studies were performed at different temperatures ranging from 50 to 400 ℃ towards 50 ppm NO2 gas. The results obtained showed that both sensors had their best optimal sensing temperature at 350 ℃, while ZnO decorated TeO2 NWs sensor showed much better sensitivity towards NO2 relative to a bare TeO2 NWs gas sensor. The reason for the enhanced sensing performance of the ZnO decorated TeO2 NWs sensor was attributed to the formation of ZnO (n)/ TeO2 (p) heterojunctions and the high intrinsic gas sensing properties of ZnO.

Characteristics of nanocrystalline ZnO films grown on polyctystalline AlN for wireless chemical sensors (무선 화학센서용으로 다결정 AlN 위에 성장된 나노결정질 ZnO 막의 특성)

  • Song, Le Thi;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.252-252
    • /
    • 2009
  • In this work, the nanocrystalline ZnO/polycrystalline (poly) aluminum nitride (AlN)/Si structure was fabricated for humidity sensor applications based on surface acoustic wave (SAW). In this structure, the ZnO film was used as sensing material layer. These ZnO and AlN(0002) were deposited by so-gel process and a pulse reactive magnetron sputtering, respectively. These experimental results showed that the obtained SAW velocity on AlN film was about 5128 m/s at $h/\lambda$=0.0125 (h and $\lambda$ is thickness and wavelength, respectively). For ZnO sensing layers coated on AlN, films have hexagonal wurtzite structure and nanometer particle size. The crystalline size of ZnO films annealed at 400, 500, and 600 $^{\circ}C$ is 10.2, 29.1, and 38 nm, respectively. Surface of the film exhibits spongy which can adsorb steam in the air. The best quality of the ZnO film was obtained with annealing temperature at 500 $^{\circ}Cis$. The change in frequency response (127.9~127.85 MHz) of the SAW humidity sensor based on ZnO/AlN structure was measured along the change in humidity (41~69%). The structural properties of thin films wereinvestigated by XRD and SEM.

  • PDF

Enhanced Hydrogen Gas Sensing Properties of ZnO Nanowires Gas Sensor by Heat Treatment under Oxygen Atmosphere (산소 분위기 열처리에 따른 ZnO 나노선의 상온 영역에서의 수소가스 검출 특성 향상)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.2
    • /
    • pp.125-130
    • /
    • 2017
  • ZnO nanowires were synthesized and annealed at various temperatures of $500-800^{\circ}C$ in oxygen atmosphere to investigate hydrogen gas sensing properties. The diameter and length of the synthesized ZnO nanowires were approximately 50-100 nm and a few $10s\;{\mu}m$, respectively. $H_2$ gas sensing performance of the ZnO nanowires sensor was measured with electrical resistance changes caused by $H_2$ gas with a concentration of 0.1-2.0%. The response of ZnO nanowires at room temperature to 2.0% $H_2$ gas is found to be two times enhanced by annealing process in $O_2$ atmosphere at $800^{\circ}C$. In the current study, the effect of heat treatment in $O_2$ atmosphere on the gas sensing performance of ZnO nanowires was studied. And the underlying mechanism for the sensing improvement of the ZnO nanowires was also discussed.

Glucose Oxidase-Coated ZnO Nanowires for Glucose Sensor Applications

  • Noh, Kyung-Min;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.669-672
    • /
    • 2008
  • Well-aligned Zinc oxide (ZnO) nanowires were synthesized on silicon substrates by a carbothermal evaporation method using a mixture of ZnO and graphite powder with Au thin film was used as a catalyst. The XRD results showed that as-prepared product is the hexagonal wurzite ZnO nanostructure and SEM images demonstrated that ZnO nanowires had been grown along the [0001] direction with hexagonal cross section. As-grown ZnO nanowires were coated with glucose oxidase (GOx) for glucose sensing. Glucose converted into gluconic acid by reaction with GOx and two electrons are generated. They transfer into ZnO nanowires due to the electric force between electrons and the positively charged ZnO nanostructures in PBS. Photoluminescence (PL) spectroscopy was employed for investigating the movements of electrons, and the peak PL intensity increased with the glucose concentration and became saturated when the glucose concentration is above 10 mM. These results demonstrate that ZnO nanostructures have potential applications in biosensors.

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO (ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구)

  • So-Young, Bak;Se-Hyeong, Lee;Chan-Yeong, Park;Dongki, Baek;Moonsuk, Yi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.