DOI QR코드

DOI QR Code

Sensing Characteristics of ZnO-based Ethanol Gas Sensor on Ga-doped Nanowires by Hot Walled Pulsed Laser Deposition

온벽 펄스 레이저 증착법을 이용해 합성한 Ga 도핑된 산화아연계 나노선 에탄올 가스 센서의 특성

  • 정다운 (한국과학기술연구원 전자재료센터) ;
  • 김경원 (한국과학기술연구원 전자재료센터) ;
  • 이득희 (한국과학기술연구원 전자재료센터) ;
  • ;
  • 김상식 (고려대학교 전기전자전파공학과) ;
  • 이상렬 (한국과학기술연구원 전자재료센터)
  • Received : 2011.03.23
  • Accepted : 2011.06.21
  • Published : 2011.07.01

Abstract

We have investigated the sensing properties of ethanol gas sensor with pure ZnO and Ga-doped ZnO nanowires on Au coated (0001) sapphire substrates grown by hot walled pulsed laser deposition. Randomly aligned ZnO nanowires arrays were grown on a Au-electrode patterned under ambient conditions. ZnO nanowires have various sizes and shapes with a different substrate position inside a furnace. The average of length and diameter of the ZnO nanowires were $8\;{\mu}m$ and 100 nm respectively, and confirmed by field emission scanning electron microscopy. Sensitivity chanege characterization of the gas sensor was found that measured sensitivities of the ethanol gas sensors were 83.3% and 68.3% at $300^{\circ}C$ respectively.

Keywords

References

  1. A. Kolmakov, D. O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, Nano. Lett., 667, 5 (2005).
  2. M. C. McApline, H. Ahmad, D. Wang, and J. R. Heath, Nature Mater., 379, 6 (2007).
  3. K. W. Kim, P. C. Debnath, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett., 98, 113109 (2011). https://doi.org/10.1063/1.3567795
  4. K. S. Yoo, J. Kor. Sensor. Soc., 5, 5 (1996).
  5. N. Yamazoe and K. Shimanoe, Sensor. Actuat., B138, 100 (2009).
  6. K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys., 79, 7983 (1996). https://doi.org/10.1063/1.362349
  7. A. Janotti and C. G. V. D. Walle, Appl. Phys. Lett., 87, 122102 (2005). https://doi.org/10.1063/1.2053360
  8. L. Binet and D. Gourier, J. Phys. Chem. Solids., 59, 1241 (1998). https://doi.org/10.1016/S0022-3697(98)00047-X
  9. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999). https://doi.org/10.1103/PhysRevLett.82.2552
  10. K. W. Kim, Y. W. Song, S. P. Chang, I. H. Kim, S. S. Kim, and S. Y. Lee, Thin Solid Films., 518, 1190 (2009). https://doi.org/10.1016/j.tsf.2009.03.229
  11. G. H. Lu, L. E. Ocola, and J. Chen, Adv. Mater., 21, 2487 (2009). https://doi.org/10.1002/adma.200803536
  12. P. C. Chen, S. Sukcharoenchoke, K. Ryu, L. G. D. Arco, A. Badmaev, C. Wang, and C. Zhou, Adv. Mater., 22, 1900 (2010). https://doi.org/10.1002/adma.200904005
  13. Z. Yang, Y. Huang, G. Chen, Z. Guo, S. Chengb, and S. Huang, Sensor. Actuat., B140, 549 (2009).
  14. W. T. Lim, J. S. Wright, B. P. Gila, J. L. Johnson, A. Ural, T. Anderson, F. Ren, and S. J. Pearton, Appl. Phys. Lett., 93, 072109 (2008). https://doi.org/10.1063/1.2975173
  15. T. J. Hsueh and S. J. Chang, Appl. Phys. Lett., 91, 053111 (2007). https://doi.org/10.1063/1.2757605
  16. L. V. Thonga, N. D. Hoaa, D. T. T. Lea, D. T. Vieta, P. D. Tamb, A. T. Leb, and N. V. Hieua, Sensor. Actuat., B146, 361 (2010).