DOI QR코드

DOI QR Code

The Analysis of Mechanism for the Gas Sensor of MWCNT/ZnO Composites Film Using the NOX Gas Detection Characteristics

NOX 가스 검출 특성을 이용한 MWCNT/ZnO 복합체 필름 가스 센서의 메커니즘 분석

  • Son, Ju-Hyung (Department of Electrical Engineering, Gachon University) ;
  • Kim, Hyun-Soo (Department of Electrical Engineering, Gachon University) ;
  • Park, Yong-Seo (Department of Electrical Engineering, Gachon University) ;
  • Jang, Kyung-Uk (Department of Electrical Engineering, Gachon University)
  • Received : 2017.12.13
  • Accepted : 2017.12.27
  • Published : 2018.03.01

Abstract

In this study, we fabricated an $NO_X$ gas sensor using a composite film of multi-walled carbon nanotubes (MWCNT)/zinc oxide (ZnO). Carbon nanotubes (CNTs) show good electronic conductivity and chemical-stability, and zinc oxide (ZnO) is a wide band gap semiconductor with a large exciton binding energy. Gas sensors require characteristics such as high speed, sensitivity, and selectivity. The fabricated gas sensor was used to detect $NO_X$ gas at different $NO_X$ concentrations. The sensitivity of the gas sensor increased with increasing gas concentrations. Additionally, while changing the temperature inside the chamber containing the MWCNT/ZnO gas sensor, we obtained the sensitivity and normalized responses for detecting $NO_X$ gas in comparison to ZnO and MWCNT film gas sensors. From the experimental results, we confirmed that the gas sensor sensing mechanism was enhanced in the composite-film gas-sensor and that the electronic interaction between MWCNT and ZnO contributed to the improved sensor performance.

Keywords

References

  1. J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kim, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
  2. P. G. Su and T. T. Pan, Mater. Chem. Phys., 125, 351 (2001). [DOI: https://doi.org/10.1016/j.matchemphys.2010.11.001]
  3. S. H. Lee, J. S. Im, S. C. Kang, T. S. Bae, S. J. In, E. Jeong, and Y. S. Lee, Chem. Phys. Lett., 497, 191 (2010). [DOI: https://doi.org/10.1016/j.cplett.2010.08.002]
  4. J. G. Park and K. J. Lee, J. Kor. Inst. Met. & Mater., 13, 38 (2000).
  5. G. Wiegleb and J. Heitbaum, Sens. Actuators, B, 17, 93 (1994). [DOI: https://doi.org/10.1016/0925-4005(94) 87035-7]
  6. D. E. Williams, Sens. Actuators, B, 57, 1 (1999). [DOI: https://doi.org/10.1016/S0925-4005(99)00133-1]
  7. S. Iijima, Nature, 38, 556 (1991).
  8. K. Lee, J. W. Lee, K. Y. Dong, and B. K. Ju, Sens. Actuators, B, 135, 214 (2008). [DOI: https://doi.org/10.1016/j.snb.2008.08.031]
  9. S. M. Lee, K. H. An, Y. H. Lee, G. Seifert, and T. Frauenheim, J. Am. Chem. Soc., 123, 5059 (2001). [DOI: https://doi.org/10.1021/ja003751+]
  10. S. Sharma, S. Hussain, S. Singh, and S. S. Islam, Sens. Actuators, B, 194, 213 (2014). [DOI: https://doi.org/10.1016/j.snb.2013.12.050]
  11. J. Suehiro, H. Imakiire, S. I. Hidaka, W. Ding, G. Zhou, K. Imsaka, and M. Hara, Sens. Actuators, B, 114, 943 (2006). [DOI: https://doi.org/10.1016/j.snb.2005.08.043]
  12. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M.M.C. Cheng, Sens. Actuators, B, 157, 310 (2011). [DOI: https://doi.org/10.1016/j.snb.2011.03.035]
  13. S. Ji, H. Wang, T. Wang, and D. Yan, Adv. Mater., 25, 1755 (2013). [DOI: https://doi.org/10.1002/adma.201204134]
  14. E. H. Espinosa, R. Ionescu, C. Bittencourt, A. Felten, R. Erni, G. Van Tendeloo, J. J. Pireaux, and E. Llobet, Thin Solid Films., 515, 8322 (2007). [DOI: https://doi.org/10.1016/j.tsf.2007.03.017]
  15. T. Ueda, S. Katsuki, N. H. Abhari, T. Ikegami, F. Mitsugi, and T. Nakamiya, Surf. Coat. Technol., 202, 5325 (2008). [DOI: https://doi.org/10.1016/j.surfcoat.2008.06.009]
  16. K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 589 (2017). [DOI: https://doi.org/10.4313/JKEM.2017.30.9.589]
  17. H. S. Kim and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 325 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.4.325]
  18. J. S. Yang, H. Y. Seong, M. J. Keum, Y. W. Park, C. H. Ka, and K. H. Kim, Trans. KIEE., 7, 18 (2001).
  19. H. S. Kim, W. J. Lee, Y. S. Park, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 312 (2016). [DOI: https://doi.org/10.4313/JKEM.2016.29.5.312]
  20. J. O. Lee, Chem. Eng. Mater., 12, 13 (2009).
  21. H. S. Kim, S. H. Lee, and K. U. Jang, J. Korean Inst. Electr. Electron. Mater. Eng., 26, 707 (2013). [DOI: https://doi.org/10.4313/JKEM.2013.26.9.707]
  22. B. A. Albiss, W. A. Safhaneh, I. Jumah, and I. M. Obaidat, IEEE Sens. J., 10, 1807 (2010). [DOI: https://doi.org/10.1109/JSEN.2010.2049739]
  23. E. S. Ahn, H. C. Jung, N. L. Nguyen, D. H. Oh, H. J. Kim, and D. J. Kim, Korean J. Mater. Res., 19, 631 (2009). [DOI: https://doi.org/10.3740/MRSK.2009.19.11.631]
  24. M. K. Kwon and Y. T. Hong, J. Korean Inst. Electr. Electron. Mater. Eng., 22, 151 (2009). [DOI: https://doi.org/10.4313/JKEM.2009.22.2.151]
  25. J. Zhang, S. Wang, Y. Wang, M. Xu, H. Xia, S. Zhang, W. Huang, X. Guo, and S. Wu, Sens. Actuators, B, 139, 411 (2009). [DOI: https://doi.org/10.1016/j.snb.2009.03.014]
  26. L. Wang, S. Wang, H. Zhang, Y. Wang, J. Yang, and W. Huang, New J. Chem., 38, 2530 (2014). [DOI: https://doi.org/10.1039/c3nj01562a]
  27. A. Abdellah, A. Abdelhalim, F. Loghin, P. Kohler, Z. Ahmad, G. Scarpa, and P. Lugli, IEEE Sens. J., 13, 4014 (2013). [DOI: https://doi.org/10.1109/JSEN.2013.2265775]
  28. L. Wang, S. Wang, M. Xu, X. Hu, H. Zhang, Y. Wang, and W. Huang, Phys. Chem. Chem. Phys., 15, 17179 (2013). [DOI: https://doi.org/10.1039/c3cp52392f]