• Title/Summary/Keyword: ZnO Grain

Search Result 444, Processing Time 0.025 seconds

Effect of $Zn_7Sb_2O_{12}$ Content on Grain Growth and Microstructure of ZnO Varistor ($Zn_7Sb_2O_{12}$ 첨가량이 ZnO 바리스터의 입자성장과 미세구조에 미치는 영향)

  • 김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.11
    • /
    • pp.955-961
    • /
    • 1993
  • Sintering behavior and microstructure development in the system ZnO-Bi2O3-CoO-Zn7Sb2O12 with Zn7Sb2O12 content(0.1mol%~2mol%) were studied. The pyrochlore phase was formed by the reaction of the Zn7Sb2O12 with Bi2O3 phase during heating (below 90$0^{\circ}C$). The formation temperature of the liquid phase (Bi2O3) was dependent on the Zn7Sb2O12 contents (about 74$0^{\circ}C$ for Bi2O3/Zn7Sb2O12>1 by the eutectic melting in the ZnOBi2O3 system, and about 110$0^{\circ}C$ for Bi2O3/Zn7Sb2O12 1 by the decomposition of pyrochlore phase). Hence, sintering behavior and microstructure development were determined virtually by the Bi2O3/Zn7Sb2O12 ratio, which were promoted by liquid (Bi2O3) phase and retarded by the pyrochlore (or spinel) phase. The grain growth of ZnO during sintering was sluggish with increasing Zn7Sb2O12 contents.

  • PDF

Fabrication of ZnO Varistor Using Secondary Seed Grains (2차 Seed Grain을 사용한 ZnO 바리스터의 제조)

  • Kim, Hyung-Joo;Mah, Jae-Pyung;Paek, Su-Hyon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.95-100
    • /
    • 1990
  • We fabricated primary and secondary seed grains. Primary seed grains having larger grain size were obtained under the conditions that were 2.0mol.% $BaCO_3$ and 10 hours sintering. The amount of primary seed grain that yield the largest secondary seed grain was chosen as 3wt.% and we fabricated the low voltage varistors which were jointed the low voltage-oriented ZnO varistor system made by conventional method with the secondary seed grains. As a result, the ZnO varistors under those conditions showed approximately 10V/mm of nonlinear resistance and 15-22 of nonlinear exponent.

  • PDF

Effects of ZnO and PbO on the Magnetic Properties of Sr-ferrite (ZnO와 PbO가 Sr-페라이트의 자기적 특성에 미치는 영향)

  • 김정훈;김동엽;김동진;정완배;오재현
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.6
    • /
    • pp.471-477
    • /
    • 1991
  • Effects of ZnO, PbO and SiO2 on the grain growth and magnetic properties of Sr-ferrite were investigated. (1) Addition of ZnO to Sr-ferrite increased remanence, but decreased coercivity and maximum energy product. (2) Addition of PbO up to 0.5 wt% increased (B$.$H)max of Sr-ferrite, but addition more than 0.5 wt% decreased (B$.$H)mzx (3) SiO2 addition to the 0.5 wt% PbO doped Sr-ferrite decreased remanence and increased coercivity. The coercivity increase in due to the grain refinement effect of SiO2. But addition of SiO2 more than 0.5 wt% invoked a decrease of coercivity and (B$.$H)max of Sr-ferrite due to abnormal grain growth. Sr-ferrite magnet having maximum energy product of 3.7MGOe was fabricated by using the roasting product of Pyrrhotite.

  • PDF

Sintering Characteristics of ZnO Fabricated by Spark Plasma Sintering Process for High Temperature Thermoelectric Materials Application (고온용 ZnO계 열전 재료의 방전플라즈마 소결 특성 및 미세구조)

  • 심광보;김경훈;홍영호;채재홍
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.6
    • /
    • pp.560-565
    • /
    • 2003
  • M-doped (M=Al, Ni) ZnO thermoelectric materials were fully densified at low temperatures of 800∼1,000$^{\circ}C$ and their sintering characteristics and microstructural features were investigated. Electron microscopic analysis showed that the addition of NiO promoted tile formation of solid solution and caused actively grain growth. The addition of A1$_2$O$_3$ prevented the evaporation of pure ZnO at grain boundaries and suppressed the grain growth by the formation of secondary phase. In case of the addition of A1$_2$O$_3$ together with NiO, the specimen showed an excellent microstructure and also the SEM-EBSP (Electron Back-scattered Diffraction Pattern) analysis confirmed that it shows a superior grain boundary distribution to the others specimens. These microstructural characteristics induced by the addition of A1$_2$O$_3$ together with NiO may increase the electrical conductivity by the increase in carrier concentration and decrease the thermal conductivity by the phonon scattering effect and, consequently, improve the thermoelectric property.

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor (ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.961-968
    • /
    • 2012
  • In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

The structural and dielectric polarization characteristics of composite oxide material in $(Ba Ca)TiO_3$-Zn (복합산화물 $(Ba Ca)TiO_3$-ZnO의 구조적 및 유전분극 특성)

  • 홍경진;임장섭;정우성;민용기;김용주;김태성
    • Electrical & Electronic Materials
    • /
    • v.10 no.3
    • /
    • pp.239-246
    • /
    • 1997
  • The ZnO is stabilize dielectric constant over a broad temperature range because its addition makes the relaxation time short. In this study, the composite oxide material (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ was mixed by ZnO additive material and the dielectric polarization characteristics was studied. The relative density was over 90[%] at all specimen in the structural characteristics. Among of the specimen, the relative density of (B $a_{0.85}$ $Ca_{0.15}$)Ti $O_{3}$ with ZnO (0.4mol) has a 95[%]. The grain size of composite oxide material with an increasing ZnO increased and it was 1.0[.mu.m]-1.22[.mu.m]. In the electrical characteristics, the charge and discharge current was increased by ZnO addition. The dielectric relaxation time was increased by space charge polarization at above 110[.deg. C] and the dielectric relaxation time was fixed by space charge polarization of para-dielectric layer at below 110[.deg. C]. The dielectric relaxation time was maximum when the grain size was small. The dielectric relaxation time is decreased with an additive material ZnO and interface polarization, existing void at the grain and grain boundary. The remnant polarization is increased and the coercive electric field is decreased by ZnO.

  • PDF

Analysis of a.c. Characteristics in ZnO-Bi2O3-Mn3O4 Varistor Using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3-Mn3O4 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.936-941
    • /
    • 2010
  • In this study, we have investigated the effects of Mn dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;\varepsilon^*$, and $tan\delta$). Admittance spectra and dielectric functions show two bulk traps of $Zn_i^{..}$ (0.20 eV) and $V^{\bullet}_o$ (0.29~0.33 eV) in ZnO-$Bi_2O_3-Mn_3O_4$ (ZBM). The barrier of grain boundaries in ZBM could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.79 eV at lower temperature to 1.08 eV at higher temperature. The grain boundary capacitance $C_{gb}$ was decreased slightly with temperature as 1.3~1.8 nF but resistance $R_{gb}$ decreased exponentially. The relaxation time distribution can result from the heterogeneity of the barriers constituting the varistor. It is revealed that Mn dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Electrical Properties of ZnO-Bi2O3-Co3O4 Varistor (ZnO-Bi2O3-Co3O4 바리스터의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.11
    • /
    • pp.882-889
    • /
    • 2011
  • In this study, we have investigated the effects of Co doping on I-V curves, bulk trap levels and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. From I-V characteristics the nonlinear coefficient (a) and the grain boundary resistivity (${\rho}_{gb}$) decreased as 32${\rightarrow}$22 and 18.4${\rightarrow}0.6{\times}10^9{\Omega}cm$ with sintering temperature (900~1,300$^{\circ}C$), respectively. Admittance spectra and dielectric functions show two bulk traps of zinc interstitial, $Zn_i^{{\cdot}{\cdot}}$(0.16~0.18 eV) and oxygen vacancy, $V_o^{{\cdot}}$ (0.28~0.33 eV). The barrier of grain boundaries in ZBCo (ZnO-$Bi_2O_3-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.93 eV at the 460~580 K to 1.13 eV at the 620~700 K. It is revealed that Co dopant in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against the ambient temperature.

Analysis of a.c. Characteristics in ZnO-Bi2O3Cr2O3 Varistor using Dielectric Functions (유전함수를 이용한 ZnO-Bi2O3Cr2O3 바리스터의 a.c. 특성 분석)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • In this study, we have investigated the effects of Cr dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;{\varepsilon}^*$, and $tan{\delta}$). Admittance spectra show more than two bulk traps of $Zn_i$ and $V_o$ probably in different ionization states in ZnO-$Bi_2O_3-Cr_2O_3$ (ZBCr) system. Three kinds of temperature-dependant activation energies ($E_{bt}'s$) were calculated as 0.11~0.14 eV of attractive coulombic center, 0.16~0.17 eV of $Zn_{\ddot{i}}$, and 0.33 eV of $V_o^{\cdot}$ as dominant bulk defects. The grain boundaries of ZBCr could be electrochemically divided into two types as a sensitive to ambient oxygen i.e. electrically active one and an oxygen-insensitive i.e. electrically inactive one. The grain boundaries were electrically single type under 460 K (equivalent circuit as parallel $R_{gb1}C_{gb1}$) but separated as double one ($R_{gb1}C_{gb1}-R_{gb2}C_{gb2}$) over 480 K. It is revealed that the dielectric functions are very useful tool to separate the overlapped bulk defect levels and to characterize the electrical properties of grain boundaries.

C-axis Orientation of ZnO Thin Films Prepared by FTS Method (대향타겟식스퍼터링으로 제작된 ZnO 박막의 C-축 배향성)

  • 금민종;손인환;최형욱;최동진;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.685-687
    • /
    • 1999
  • We prepared ZnO thin film with Facing Targets Sputtering system that can deposit thin film in plasma-free situation and change the deposition condition in wide range. And prepared thin films c-axis orientation and grain size were analyzed by XRD(x-ray dffractometer). In the results, we suggest that FTS system is very suitable to preparing high quality ZnO thin film with good c-axis orientation.

  • PDF