DOI QR코드

DOI QR Code

Sintering Characteristics of ZnO Fabricated by Spark Plasma Sintering Process for High Temperature Thermoelectric Materials Application

고온용 ZnO계 열전 재료의 방전플라즈마 소결 특성 및 미세구조

  • 심광보 (세라믹공정연구센터, 한양대학교 세라믹공학과) ;
  • 김경훈 (세라믹공정연구센터, 한양대학교 세라믹공학과) ;
  • 홍영호 (세라믹공정연구센터, 한양대학교 세라믹공학과) ;
  • 채재홍 (요업기술원 연구기획팀)
  • Published : 2003.06.01

Abstract

M-doped (M=Al, Ni) ZnO thermoelectric materials were fully densified at low temperatures of 800∼1,000$^{\circ}C$ and their sintering characteristics and microstructural features were investigated. Electron microscopic analysis showed that the addition of NiO promoted tile formation of solid solution and caused actively grain growth. The addition of A1$_2$O$_3$ prevented the evaporation of pure ZnO at grain boundaries and suppressed the grain growth by the formation of secondary phase. In case of the addition of A1$_2$O$_3$ together with NiO, the specimen showed an excellent microstructure and also the SEM-EBSP (Electron Back-scattered Diffraction Pattern) analysis confirmed that it shows a superior grain boundary distribution to the others specimens. These microstructural characteristics induced by the addition of A1$_2$O$_3$ together with NiO may increase the electrical conductivity by the increase in carrier concentration and decrease the thermal conductivity by the phonon scattering effect and, consequently, improve the thermoelectric property.

방전 플라즈마 소결법(SPS: Spark Plasma Sintering)을 이용하여 800~100$0^{\circ}C$의 낮은 소결 온도에서 완전 치밀화를 이루는 M-doped ZnO를 (M=Al, Ni) 제조하여 그 소결 특성과 미세구조를 분석하였다. 전자현미경 분석 결과, NiO의 첨가는 ZnO 결정격자와의 고용체 형성을 촉진시키고 결정립 성장을 유발하였고, A1$_2$O$_3$는 순수한 ZnO 소결 시 나타나는 입계에서의 증발현상을 제어하고, 이차상 형성을 통하여 결정립 성장을 억제함을 확인할 수 있었다 NiO와 $Al_2$O$_3$를 동시에 첨가한 시편이 가장 우수한 미세구조가 형성됨을 확인하였고, SEM-EBSP (Electron Back-scattered Diffraction Pattern) 분석 결과 또한 우수한 결정립계 분포를 가지고 있음을 확인하였다. 이러한, 소결체의 우수한 미세구조적 특징은 carrier 농도 증가에 따른 전기 전도도와 증가 및 phonon scattering 효과에 의한 열전도도의 감소 효과를 유발하여 ZnO의 열전 특성을 향상시키리라 사료된다.

Keywords

References

  1. Mater. Sci. & Eng. B v.7 no.1-2 On the Use of Oxides for Thermoelectric Refrigeration W.J.Macklin;P.T.Moseley https://doi.org/10.1016/0921-5107(90)90015-4
  2. J. Mater. Chem. v.7 no.1 Thermoelectric Properties of Al-doped ZnO as a Promising Oxide Material for High-temperature Thermoelectric Conversion T.Tsubota;M.Ohtaki;K.Eguchi;H.Arai https://doi.org/10.1039/a602506d
  3. J. Jpn. Inst. Metals. v.63 no.11 Microstructure and Thermoelectric Properties of ZnO and ($Zn_{0.98}Al_{0.02}$)O Thermoelectric Material Sintered from Ultra Fine Oxide Powder D.Kusano;Y.Hori;K.Izumi;T.Kajikawa;K.Shida https://doi.org/10.2320/jinstmet1952.63.11_1429
  4. Metals & Mater. v.4 no.1 Thermoelectric Properties of p-type $(Bi,Sb)_{2}Te_{3}$ Alloys Fabricated by the Hot Pressing Method H.J.Kim;H.C.Kim;D.B.Hyun;T.S.Oh https://doi.org/10.1007/BF03026068
  5. J. Mater. Res. v.13 no.3 Improvement in Thermoelectric Properties of $(ZnO)_{5}In_{2}O_{3}$ through Partial Substitution of Yttrium for Indium M.Kazeoka;H.Hiramatsu;W.S.Seo;K.Koumoto https://doi.org/10.1557/JMR.1998.0067
  6. J. Phys. Chem. Solids v.38 no.8 Single Crystal Synthesis and Elctrical Properties of CdSnO₃, Cd₂SnO₄, $In_2TeO_6$ and CdIn₂O₄ R.D.Shannon;J.L.Gilson;R.J.Bouchaed https://doi.org/10.1016/0022-3697(77)90126-3
  7. J. Appl. Phys. v.92 no.3 Thermoelectric Properties of $(Zn_{1-y}Mg_{y})_{1-x}Al_{x}O$ Ceramics Prepared by the Polymerized Complex Method S.Katsuyama;Y.Tokagi;M.Ito;K.Majima;H.Nagai https://doi.org/10.1063/1.1489091
  8. J. Mater. Sci. Lett. v.16 no.2 Thermoelectric Properties of ZnO-based Materials Y.Tanaka;T.Ifuka;K.Tsuchida;A.Kato https://doi.org/10.1023/A:1018506430036
  9. J. Soc. Powder & Tech. Jpn. v.30 no.11 Trends in Advanced SPS (Spark Plasma Sintering) Systems and Technology M.Tokita https://doi.org/10.4164/sptj.30.11_790
  10. Mater. Sci. & Eng. v.A287 Sintering, Consolidation, Reaction and Crystal Growth by the Spark Plasma System(SPS) M.Omori
  11. Proc. 5th int. Symp. on FGM Development of Large-size Ceramic/Metal Bulk FGM Fabricated by Spark Plasma Sintering M.Tokita
  12. J. Am. Ceram. Soc. v.85 no.8 Spark Plasma Sintering of Alumina Z.Shen;M.Johnsson;Z.Zhao;M.Nygren https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  13. J. Am. Ceram. Soc. v.78 no.12 Reaction Sintering of ZnO-$Al_{2}O_{3}$ W.S.Hong;L.C.De Jonghe https://doi.org/10.1111/j.1151-2916.1995.tb07957.x
  14. J. Euro. Ceram. Soc. v.20 no.12 Bending Strength and Microstructure of Al_{2}O_{3}$ Ceramics Densified by Spark Plasma Sintering L.Gao;J.S.Hong;H.Miyamoto;S.D.D.L.Torre https://doi.org/10.1016/S0955-2219(00)00086-8
  15. Ultramicroscopy v.67 no.1/4 Grain Boundary Studies of High-temperature Superconducting Materials Using Electron Backscatter Kikuchi Diffraction A.Goyal;E.D.Specht;Z.L.Wang;D.M.Kroeger https://doi.org/10.1016/S0304-3991(96)00105-2
  16. Phys. Rev. Lett. v.61 Orientation Dependence of Grain-boundary Critical Current in $YBa_{2}Cu_{3}O_{7}$ Bicrystals D.Dimos;P.Chandhari;J.Mannhart;F.K.Legoues https://doi.org/10.1103/PhysRevLett.61.219
  17. Appl. Phys. Lett. v.66 no.21 Grain Boundary Misorientations and Percolative Current Paths in $High-J_{c}$ Powder-in-Tube $(Bi,Pb)_{2}Sr_{3}Ca_{3}Cu_{3}O_{x}$ A.Goyal;E.D.Specht;Z.L.Wang;D.M.Kroeger;T.A.Mason;D.J.Dingley https://doi.org/10.1063/1.113468