DOI QR코드

DOI QR Code

Defects and Electrical Properties of ZnO-Bi2O3-Mn3O4-Co3O4 Varistor

ZnO-Bi2O3-Mn3O4-Co3O4 바리스터의 결함과 전기적 특성

  • Hong, Youn-Woo (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Jin (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sei-Ki (Functional Module Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 기능성모듈팀) ;
  • 이영진 (한국세라믹기술원 기능성모듈팀) ;
  • 김세기 (한국세라믹기술원 기능성모듈팀) ;
  • 김진호 (경북대학교 신소재공학부)
  • Received : 2012.09.28
  • Accepted : 2012.11.19
  • Published : 2012.12.01

Abstract

In this study, we have investigated the effects of Mn and Co co-doping on defects, J-E curves and grain boundary characteristics of ZnO-$Bi_2O_3$ (ZB) varistor. Admittance spectra and dielectric functions show two bulk defects of $Zn_i^{{\cdot}{\cdot}}$ (0.17~0.18 eV) and $V_o^{\cdot}$ (0.30~0.33 eV). From J-E characteristics the nonlinear coefficient (${\alpha}$) and resistivity (${\rho}_{gb}$) of pre-breakdown region decreased as 30 to 24 and 5.1 to 0.08 $G{\Omega}cm$ with sintering temperature, respectively. The double Schottky barrier of grain boundaries in ZB(MCo) ($ZnO-Bi_2O_3-Mn_3O_4-Co_3O_4$) could be electrochemically single type. However, its thermal stability was slightly disturbed by ambient oxygen because the apparent activation energy of grain boundaries was changed from 0.64 eV at lower temperature to 1.06 eV at higher temperature. It was revealed that a co-doping of Mn and Co in ZB reduced the heterogeneity of the barrier in grain boundaries and stabilized the barrier against an ambient temperature (${\alpha}$-factor= 0.136).

Keywords

References

  1. D. R. Clarke, J. Am. Ceram. Soc., 82, 485 (1999).
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Eda, IEEE Elec. Insulation. Mag., 5, 28 (1989).
  4. R. Einzinger, Ann. Rev. Mater. Sci., 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  5. F. Greuter and G. Blatter, Semicond. Sci. Technol., 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  6. M. Andres-Verges and A. R. West, J. Electroceram., 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  7. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 21, 738 (2008).
  8. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 368 (2010).
  9. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 942 (2010).
  10. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 941 (2009).
  11. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 23, 936 (2010).
  12. Y. W. Hong and J. H. Kim, Ceram. Int., 30, 1307 (2004). https://doi.org/10.1016/j.ceramint.2003.12.026
  13. Y. W. Hong and J. H. Kim, J. Kor. Ceram. Soc., 37, 651 (2000).
  14. H. R. Philipp, Materials Science Research, Tailoring Multiphase and Composite Ceramics (eds. R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham) (Prenum Press, New York/London, 1987) p. 481.
  15. I. M. Hodge, M. D. Ingram, and A. R. West, J. Electroanal. Chem., 74, 125 (1976). https://doi.org/10.1016/S0022-0728(76)80229-X
  16. J. R. Macdonald, Impedance Spectroscopy, (John Wiley & Sons, New York, 1987) p. 1.
  17. R. Gerhardt, J. Phys. Chem. Solids, 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  18. K. A. Abdullah, A. Bui, and A. Loubiere, J. Appl. Phys., 69, 4046 (1991). https://doi.org/10.1063/1.348414
  19. Y. W. Hong, H. S. Shin, D. H. Yeo, J. H. Kim, and J. H. Kim, J. KIEEME, 22, 949 (2009).
  20. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 882 (2011).
  21. Y. W. Hong, H. S. Shin, D. H. Yeo, and J. H. Kim, J. KIEEME, 24, 962 (2011).