DOI QR코드

DOI QR Code

Analysis of a.c. Characteristics in ZnO-Bi2O3Cr2O3 Varistor using Dielectric Functions

유전함수를 이용한 ZnO-Bi2O3Cr2O3 바리스터의 a.c. 특성 분석

  • Hong, Youn-Woo (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyo-Soon (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Yeo, Dong-Hun (Bio-IT Convergence Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (School of Materials Science and Engineering, Kyungpook National University)
  • 홍연우 (한국세라믹기술원 바이오IT융합센터) ;
  • 신효순 (한국세라믹기술원 바이오IT융합센터) ;
  • 여동훈 (한국세라믹기술원 바이오IT융합센터) ;
  • 김진호 (경북대학교 신소재공학부)
  • Published : 2010.05.01

Abstract

In this study, we have investigated the effects of Cr dopant on the bulk trap levels and grain boundary characteristics of $Bi_2O_3$-based ZnO (ZB) varistor using admittance spectroscopy and dielectric functions (such as $Z^*,\;Y^*,\;M^*,\;{\varepsilon}^*$, and $tan{\delta}$). Admittance spectra show more than two bulk traps of $Zn_i$ and $V_o$ probably in different ionization states in ZnO-$Bi_2O_3-Cr_2O_3$ (ZBCr) system. Three kinds of temperature-dependant activation energies ($E_{bt}'s$) were calculated as 0.11~0.14 eV of attractive coulombic center, 0.16~0.17 eV of $Zn_{\ddot{i}}$, and 0.33 eV of $V_o^{\cdot}$ as dominant bulk defects. The grain boundaries of ZBCr could be electrochemically divided into two types as a sensitive to ambient oxygen i.e. electrically active one and an oxygen-insensitive i.e. electrically inactive one. The grain boundaries were electrically single type under 460 K (equivalent circuit as parallel $R_{gb1}C_{gb1}$) but separated as double one ($R_{gb1}C_{gb1}-R_{gb2}C_{gb2}$) over 480 K. It is revealed that the dielectric functions are very useful tool to separate the overlapped bulk defect levels and to characterize the electrical properties of grain boundaries.

Keywords

References

  1. L. M. Levinson and H. R. Philipp, Am. Ceram. Soc. Bull. 65, 639 (1986).
  2. T. K. Gupta, J. Am. Ceram. Soc. 73, 1817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. R. Einzinger, Ann. Rev. Mater. Sci. 17, 299 (1987). https://doi.org/10.1146/annurev.ms.17.080187.001503
  4. M. Inada and M. Matsuoka, Advances in Ceramics, Vol. 7 (Am. Ceram. Soc., Columbus, OH, 1983) p. 91.
  5. E. Olsson and G. L. Dunlop, J. Appl. Phys. 66, 3666(1989). https://doi.org/10.1063/1.344453
  6. J. Han, P. Q. Mantas, and A. M. R. Senos, J. Euro. Ceram. Soc. 22, 49 (2002). https://doi.org/10.1016/S0955-2219(01)00241-2
  7. F. Greuter and G. Blatter, Semicond. Sci. Technol. 5, 111 (1990). https://doi.org/10.1088/0268-1242/5/2/001
  8. R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994). https://doi.org/10.1016/0022-3697(94)90575-4
  9. M. Andres-Verges and A. R. West, J. Electroceram. 1, 125 (1997). https://doi.org/10.1023/A:1009906315725
  10. Y.-W. Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 21, 738 (2008).
  11. Y.-W Hong, H.-S. Shin, D.-H. Yeo, J.-H. Kim, and J.-H. Kim, J. KIEEME 22, 949 (2009).