• 제목/요약/키워드: ZnO:Ga film

검색결과 322건 처리시간 0.029초

NI법에 의한 기계적 특성에 미치는 ZnO박막의 기판재의 영향 (Influence of Substrate on Mechanical Characteristics of ZnO Thin Film by NI Technology)

  • 정헌재;김동현;윤한기;임희섭;유윤식
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.342-346
    • /
    • 2004
  • Recently there has been a great world-wide interest in developing and characterizing new nano-structured materials. These newly developed materials are often prepared in limited quantities and shapes unsuitable for the extensive mechanical testing. The development of depth sensing indentation methods have introduced the advantage of load and depth measurement during the indentation cycle. In the present work, ZnO thin films are prepared on the Glass, GaAs(100), Si(111), and Si(100) substrates at different temperatures by pulsed laser deposition(PLD) method. Because the potential energy in c-axis is law, the films always shaw c-axis orientation at the optimized conditions in spite of the different substrates. Thin films are investigated by X-ray diffractometer and Nano indentation equipment. From these measurements it is possible to get elastic modulus and hardness of ZnO thin films on all substrates.

  • PDF

High-performance thin-film transistor with a novel metal oxide channel layer

  • Son, Dae-Ho;Kim, Dae-Hwan;Kim, Jung-Hye;Sung, Shi-Joon;Jung, Eun-Ae;Kang, Jin-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.222-222
    • /
    • 2010
  • Transparent semiconductor oxide thin films have been attracting considerable attention as potential channel layers in thin film transistors (TFTs) owing to their several advantageous electrical and optical characteristics such as high mobility, high stability, and transparency. TFTs with ZnO or similar metal oxide semiconductor thin films as the active layer have already been developed for use in active matrix organic light emitting diode (AMOLED). Of late, there have been several reports on TFTs fabricated with InZnO, AlZnSnO, InGaZnO, or other metal oxide semiconductor thin films as the active channel layer. These newly developed TFTs were expected to have better electrical characteristics than ZnO TFTs. In fact, results of these investigations have shown that TFTs with the new multi-component material have excellent electrical properties. In this work, we present TFTs with inverted coplanar geometry and with a novel HfInZnO active layer co-sputtered at room temperature. These TFTs are meant for use in low voltage, battery-operated mobile and flexible devices. Overall, the TFTs showed good performance: the low sub-threshold swing was low and the $I_{on/off}$ ratio was high.

  • PDF

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim;Cho, Hyeon-Su;Ok, Kyung-Chul;Oh, Saeroonter;Park, Jin-Seong
    • Electronic Materials Letters
    • /
    • 제14권6호
    • /
    • pp.749-754
    • /
    • 2018
  • Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • 이동혁;김경덕;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

Ultra-High Resolution and Large Size Organic Light Emitting Diode Panels with Highly Reliable Gate Driver Circuits

  • Hong Jae Shin
    • International journal of advanced smart convergence
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2023
  • Large-size, organic light-emitting device (OLED) panels based on highly reliable gate driver circuits integrated using InGaZnO thin film transistors (TFTs) were developed to achieve ultra-high resolution TVs. These large-size OLED panels were driven by using a novel gate driver circuit not only for displaying images but also for sensing TFT characteristics for external compensation. Regardless of the negative threshold voltage of the TFTs, the proposed gate driver circuit in OLED panels functioned precisely, resulting from a decrease in the leakage current. The falling time of the circuit is approximately 0.9 ㎲, which is fast enough to drive 8K resolution OLED displays at 120 Hz. 120 Hz is most commonly used as the operating voltage because images consisting of 120 frames per second can be quickly shown on the display panel without any image sticking. The reliability tests showed that the lifetime of the proposed integrated gate driver is at least 100,000 h.

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

Low-Temperature Deposition of Ga-Doped ZnO Films for Transparent Electrodes by Pulsed DC Magnetron Sputtering

  • Cheon, Dongkeun;Ahn, Kyung-Jun;Lee, Woong
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.69-75
    • /
    • 2017
  • To establish low-temperature process conditions, process-property correlation has been investigated for Ga-doped ZnO (GZO) thin films deposited by pulsed DC magnetron sputtering. Thickness of GZO films and deposition temperature were varied from 50 to 500 nm and from room temperature to $250^{\circ}C$, respectively. Electrical properties of the GZO films initially improved with increase of temperature to $150^{\circ}C$, but deteriorated subsequently with further increase of the temperature. At lower temperatures, the electrical properties improved with increasing thickness; however, at higher temperatures, increasing thickness resulted in deteriorated electrical properties. Such changes in electrical properties were correlated to the microstructural evolution, which is dependent on the deposition temperature and the film thickness. While the GZO films had c-axis preferred orientation due to preferred nucleation, structural disordering with increasing deposition temperature and film thickness promoted grain growth with a-axis orientation. Consequently, it was possible to obtain a good electrical property at relatively low deposition temperature with small thickness.

Optimization of GZO/Ag/GZO Multilayer Electrodes Obtained by Pulsed Laser Deposition at Room Temperature

  • Cheon, Eunyoung;Lee, Kyung-Ju;Song, Sang Woo;Kim, Hwan Sun;Cho, Dae Hee;Jang, Ji Hun;Moon, Byung Moo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.336.2-336.2
    • /
    • 2014
  • Indium Tin Oxide (ITO) thin films are used as the Transparent Conducting Oxide (TCO), such as flat panel display, transparent electrodes, solar cell, touch screen, and various optical devices. ZnO has attracted attention as alternative materials to ITO film due to its resource availability, low cost, and good transmittance at the visible region. Recently, very thin film deposition is important. In order to minimize the damage caused by bending. However, ZnO thin film such as Ga-doped ZnO(GZO) has poor sheet resistance characteristics. To solve this problem, By adding the conductive metal on films can decrease the sheet resistance and increase the mobility of the films. In this study, We analyzed the electrical and optical characteristics of GZO/Ag/GZO (GAG) films by change in Ag and GZO thickness.

  • PDF

수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가 (Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis)

  • 정준교;윤호진;양승동;박정현;김효진;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제30권4호
    • /
    • pp.229-234
    • /
    • 2017
  • In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • 김웅선;문연건;권태석;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF