DOI QR코드

DOI QR Code

Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates

  • Han, Ki-Lim (Division of Materials Science and Engineering, Hanyang University) ;
  • Cho, Hyeon-Su (Division of Materials Science and Engineering, Hanyang University) ;
  • Ok, Kyung-Chul (Division of Materials Science and Engineering, Hanyang University) ;
  • Oh, Saeroonter (Division of Electrical Engineering, Hanyang University) ;
  • Park, Jin-Seong (Division of Materials Science and Engineering, Hanyang University)
  • Received : 2017.11.15
  • Accepted : 2018.06.10
  • Published : 2018.11.10

Abstract

Previous studies have reported on the mechanical robustness and chemical stability of flexible amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs) on plastic substrates both in flat and curved states. In this study, we investigate how the polyimide (PI) substrate affects hydrogen concentration in the a-IGZO layer, which subsequently influences the device performance and stability under bias-temperature-stress. Hydrogen increases the carrier concentration in the active layer, but it also electrically deactivates intrinsic defects depending on its concentration. The influence of hydrogen varies between the TFTs fabricated on a glass substrate to those on a PI substrate. Hydrogen concentration is 5% lower in devices on a PI substrate after annealing, which increases the hysteresis characteristics from 0.22 to 0.55 V and also the threshold voltage shift under positive bias temperature stress by 2 ${\times}$ compared to the devices on a glass substrate. Hence, the analysis and control of hydrogen flux is crucial to maintaining good device performance and stability of a-IGZO TFTs.

Keywords

Acknowledgement

Supported by : MOTIE (Ministry of Trade, Industry and Energy), Hanyang University

References

  1. Nathan, A., Ahnood, A., Cole, M.T., Lee, S., Suzuki, Y., Hiralal, P., Bonaccorso, F., Hasan, T., Garcia-Gancedo, L., Dyadyusha, A. : Flexible electronics: the next ubiquitous platform. Proc. IEEE 100, 1486 (2012) https://doi.org/10.1109/JPROC.2012.2190168
  2. Fujisaki, Y., Nakata, M., Nakajima, Y., Tsuji, H., Miyakawa, M., Motomura, G., Fukagawa, H., Shimizu, T., Tsuzuki, T., Takei, T., Yamamoto, T. : Oxide/organic semiconductor electronics on plastic substrates for flexible AMOLED displays. SID Symp. Dig. Tech. Pap. 47, 633 (2016)
  3. Chwang, A.B., Rothman, M.A., Mao, S.Y., Hewitt, R.H., Weaver, M.S., Silvernail, J.A., Rajan, K., Hack, M., Brown, J.J., Chu, X. : Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 83, 413 (2003) https://doi.org/10.1063/1.1594284
  4. Greener, J., Ng, K., Vaeth, K., Smith, T. : Moisture permeability through multilayered barrier films as applied to flexible OLED display. J. Appl. Polym. Sci. 106, 3534 (2007) https://doi.org/10.1002/app.26863
  5. Xu, H., Luo, D., Li, M., Xu, M., Zou, J., Tao, H., Lan, L., Wang, L., Peng, J., Cao, Y. : A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric. J. Mater. Chem. C 2, 1255 (2014) https://doi.org/10.1039/C3TC31710B
  6. Park, J.-S., Kim, T.-W., Stryakhilev, D., Lee, J.-S., An, S.-G., Pyo, Y.-S., Lee, D.-B., Mo, Y.G., Jin, D.-U., Chung, H.K. : Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors. Appl. Phys. Lett. 95, 013503 (2009) https://doi.org/10.1063/1.3159832
  7. Yabuta, H., Sano, M., Abe, K., Aiba, T., Den, T., Kumomi, H., Nomura, K., Kamiya, T., Hosono, H. : High-mobility thin-film transistor with amorphous $InGaZnO_4$ channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 89, 112123 (2006) https://doi.org/10.1063/1.2353811
  8. Jeong, J.K., Jeong, J.H., Choi, J.H., Im, J.S., Kim, S.H., Yang, H.W., Kang, K.N., Kim, K.S., Ahn, T.K., Chung, H.J. : 12.1-Inch WXGA AMOLED Display Driven by Indium-Gallium-Zinc Oxide TFTs Array. SID Symp. Dig. Tech. Pap. 39, 5 (2008)
  9. Munzenrieder, N., Cherenack, K.H., Troster, G. : The Effects of Mechanical Bending and Illumination on the Performance of Flexible IGZO TFTs. IEEE Trans. Electron Devices 58, 2041 (2011) https://doi.org/10.1109/TED.2011.2143416
  10. Jeong, H.-J., Han, K.-L., Ok, K.-C., Lee, H.-M., Oh, S., Park, J.-S. : Effect of mechanical stress on the stability of flexible InGaZnO thin-film transistors. J. Inf. Disp. 18, 87 (2017) https://doi.org/10.1080/15980316.2017.1294116
  11. Park, S.-H.K., Cho, D.-H., Hwang, C.-S., Yang, S., Ryu, M.K., Byun, C.-W., Yoon, S.M., Cheong, W.-S., Cho, K.I., Jeon, J.-H. : Channel protection layer effect on the performance of oxide TFTs. ETRI J. 31, 653 (2009) https://doi.org/10.4218/etrij.09.1209.0043
  12. Oh, S., Baeck, J.H., Bae, J.U., Park, K.-S., Kang, I.B. : Effect of interfacial excess oxygen on positive-bias temperature stress instability of self-aligned coplanar InGaZnO thin-film transistors. Appl. Phys. Lett. 108, 141604 (2016) https://doi.org/10.1063/1.4945404
  13. Ide, K., Kikuchi, Y., Nomura, K., Kimura, M., Kamiya, T., Hosono, H. : Effects of excess oxygen on operation characteristics of amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 99, 093507 (2011) https://doi.org/10.1063/1.3633100
  14. Kim, S., Jeon, Y.W., Kim, Y., Kong, D., Jung, H.K., Bae, M.-K., Lee, J.-H., Ahn, B.D., Park, S.Y., Park, J.-H., Park, J., Kwon, H.-I., Kim, D.M., Kim, D.H. : Impact of oxygen flow rate on the instability under positive bias stresses in DC-sputtered amorphous InGaZnO thin-film transistors. IEEE Electron Device Lett. 33, 62 (2012) https://doi.org/10.1109/LED.2011.2173153
  15. Barton, J.L., Morain, M. : Hydrogen diffusion in silicate glasses. J. Non-Cryst. Solid 3, 1 (1970) https://doi.org/10.1016/0022-3093(70)90102-X
  16. Abetz, V., Brinkmann, T., Dijkstra, M., Ebert, K., Fritsch, D., Ohlrogge, K., Paul, D., Peinemann, K.V., Pereira-Nunes, S., Scharnagl, N., Schossig, M. : Developments in membrane research: from material via process design to industrial application. Adv. Eng. Mater. 8, 5 (2006)
  17. Summary of Properties of Kapton Polyimide Films (Online). http://www.dupont.com/products-and-services/membranes-films/polyi mide-films.html. Accessed 23 Feb 2018
  18. Oh, S., Woo, J.M., Jang, J.H. : Comparative studies of long-term ambiance and electrical stress stability of IGZO thin-film transistors annealed under hydrogen and nitrogen ambiance. IEEE Trans. Electron Devices 63, 5 (2016) https://doi.org/10.1109/TED.2015.2503659
  19. Toda, T., Wang, D., Jiang, J., Hung, M.P., Furuta, M. : Quantitative analysis of the effect of hydrogen diffusion from silicon oxide etch-stopper layer into amorphous In-Ga-Zn-O on thin-film transistor. IEEE Trans. Electron Devices 61, 11 (2014)
  20. Ok, K.-C., Ko Park, S.-H., Hwang, C.-S., Kim, H., Soo Shin, H., Bae, J., Park, J.S. : The effects of buffer layers on the performance and stability of flexible InGaZnO thin film transistors on polyimide substrates. Appl. Phys. Lett. 104, 063508 (2014) https://doi.org/10.1063/1.4864617
  21. Kamiya, T., Hosono, H. : Roles of hydrogen in amorphous oxide semiconductor. ECS Trans. 54, P103 (2013) https://doi.org/10.1149/05401.0103ecst
  22. Hanyu, Y., Domen, K., Nomura, K., Hiramatsu, H., Kumomi, H., Hosono, H., Kamiya, T. : Hydrogen passivation of electron trap in amorphous In-Ga-Zn-O thin-film transistors. Appl. Phys. Lett. 103, 202114 (2013) https://doi.org/10.1063/1.4832076
  23. Nomura, K., Kamiya, T., Hosono, H. : Effects of diffusion of hydrogen and oxygen on electrical properties of amorphous oxide semiconductor, In-Ga-Zn-O. ECS J. Solid State Sci. Technol. 2, P5 (2013) https://doi.org/10.1149/2.011301jss

Cited by

  1. Effect of Simultaneous Mechanical and Electrical Stress on the Electrical Performance of Flexible In-Ga-Zn-O Thin-Film Transistors vol.12, pp.19, 2018, https://doi.org/10.3390/ma12193248
  2. Atomic-Layer-Deposited SiOx/SnOx Nanolaminate Structure for Moisture and Hydrogen Gas Diffusion Barriers vol.13, pp.33, 2018, https://doi.org/10.1021/acsami.1c09901
  3. Effects of polyimide curing on image sticking behaviors of flexible displays vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-01364-6