DOI QR코드

DOI QR Code

Fabrication and Characterization of TFT Gas Sensor with ZnO Nanorods Grown by Hydrothermal Synthesis

수열합성법으로 성장시킨 ZnO 나노 로드기반 TFT 가스 센서 제조 및 특성평가

  • Jeong, Jun-Kyo (Department of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Yun, Ho-Jin (Department of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Yang, Seung-Dong (Department of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Park, Jeong-Hyun (Department of Electronic Radio Information Communication Engineering, Chungnam National University) ;
  • Kim, Hyo-Jin (Department of Material Science Engineering, Chungnam National University) ;
  • Lee, Ga-Won (Department of Electronic Radio Information Communication Engineering, Chungnam National University)
  • 정준교 (충남대학교 전자전파정보통신공학과) ;
  • 윤호진 (충남대학교 전자전파정보통신공학과) ;
  • 양승동 (충남대학교 전자전파정보통신공학과) ;
  • 박정현 (충남대학교 전자전파정보통신공학과) ;
  • 김효진 (충남대학교 재료공학과) ;
  • 이가원 (충남대학교 전자전파정보통신공학과)
  • Received : 2017.01.23
  • Accepted : 2017.02.21
  • Published : 2017.04.01

Abstract

In this study, we fabricated a TFT gas sensor with ZnO nanorods grown by hydrothermal synthesis. The suggested devices were compared with the conventional ZnO film-type TFTs in terms of the gas-response properties and the electrical transfer characteristics. The ZnO seed layer is formed by atomic-layer deposition (ALD), and the precursors for the nanorods are zinc nitrate hexahydrate ($Zn(NO_3)_2{\cdot}6H_2O$) and hexamethylenetetramine ($(CH_2)6N_4$). When 15 ppm of NO gas was supplied in a gas chamber at $150^{\circ}C$ to analyze the sensing capability of the suggested devices, the sensitivity (S) was 4.5, showing that the nanorod-type devices respond sensitively to the external environment. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which showed that the oxygen deficiency of ZnO nanorods is higher than that of ZnO film, and confirms that the ZnO nanorod-type TFTs are advantageous for the fabrication of high-performance gas sensors.

Keywords

References

  1. N. Yamazoe, Sens. Actuators, B: Chem., 108, 2 (2005). [DOI: https://doi.org/10.1016/j.snb.2004.12.075]
  2. A. Z. Sadek, S. Choopun, W. Wlodarski, S. J. Ippolito, and K. Kalantar-zadeh, IEEE Sens. J., 7, 919 (2007). [DOI: https://doi.org/10.1109/JSEN.2007.895963]
  3. C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D.P.R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, and D. Wang, Nano Lett., 7, 1003 (2007). [DOI: https://doi.org/10.1021/nl070111x]
  4. L. W. Ji, S. M. Peng, Y. K. Su, S. J. Young, C. Z. Wu, and W. B. Cheng, Appl. Phys. Lett., 94, 203106 (2009). [DOI: https://doi.org/10.1063/1.3141447]
  5. J. J. Hassana, M. A. Mahdia, C. W. China, H. Abu-Hassana, and Z. Hassana, Sens. Actuators, B: Chem., 176, 360 (2013). [DOI: https://doi.org/10.1016/j.snb.2012.09.081]
  6. Y. Wu and P. Yang, Chem. Mater., 12, 605 (2000). [DOI: https://doi.org/10.1021/cm9907514]
  7. M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, Appl. Phys. Lett., 61, 2051 (1992). [DOI: https://doi.org/10.1063/1.108329]
  8. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, Adv. Mater., 12, 746 (2000). [DOI: https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>3.0.CO;2-N]
  9. K. T. Kim, M. J. Kim, and S. M. Cho, Mater. Chem. Phys., 96, 278 (2006). [DOI: https://doi.org/10.1016/j.matchemphys. 2005.07.013]
  10. Y. J. Tak and K. J. Yong, J. Phys. Chem. B, 109, 19263 (2005). [DOI: https://doi.org/10.1021/jp0538767]
  11. M. Y. Cho, M. S. Kim, G. S. Kim, H. Y. Choi, S. M. Jeon, K. G. Yim, D. Y. Lee, J. S. Kim, J. S. Kim, J. I. Lee, and J. Y. Leem, J. Korean Vac. Soc., 19, 236 (2010). [DOI: https://doi.org/10.5757/JKVS.2010.19.3.236]
  12. Q. H. Li, Y. X. Liang, Q. Wan, and T. H. Wang, Appl. Phys. Lett., 85, 6389 (2004). [DOI: https://doi.org/10.1063/1.1840116]
  13. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, Sens. Actuators, B: Chem., 138, 168 (2009). [DOI: https://doi.org/10.1016/j.snb.2009.02.008]
  14. T. J. Hsueh, C. L. Hsu, S. J. Chang, and I. C. Chen, Sens. Actuators, B: Chem., 126, 473 (2007). [DOI: https://doi.org/10.1016/j.snb.2007.03.034]
  15. J. J. Park, S. H. Lee, and K. J. Yong, Nanotechnology, 23, 385707 (2012). [DOI: https://doi.org/10.1088/0957-4484/23/38/385707]
  16. S. H. Baek, J. J. Song, and S. W. Lim, Physica B, 399, 101 (2007). [DOI: https://doi.org/10.1016/j.physb.2007.05.030]
  17. E. B. Lee, Y. W. Park, I. S. Hwang, S. J. Kim, J. G. Cha, H. J. Lee, J. H. Lee, and B. K. Ju, Journal of IKEEE, 13, 37 (2009).
  18. J. M. Lee, I. T. Cho, J. H. Lee, and H. I. Kwon, Appl. Phys. Lett., 93, 093504 (2008). [DOI: https://doi.org/10.1063/1.2977865]
  19. Y. F. Lu, H. Q. Ni, Z. H. Mai, and Z. M. Ren, J. Appl. Phys., 88, 498 (2000). [DOI: https://doi.org/10.1063/1.373685]
  20. S. Y. Sung, J. H. Choi, U. B. Han, K. C. Lee, J. H. Lee, J. J. Kim, W. T. Lim, S. J. Pearton, D. P. Norton, and Y. W. Heo, Appl. Phys. Lett., 96, 102107 (2010). [DOI: https://doi.org/10.1063/1.3357431]
  21. J. K. Jeong, H. W. Yang, J. H. Jeong, Y. G. Mo, and H. D. Kim, Appl. Phys. Lett., 93, 123508 (2008). [DOI: https://doi.org/10.1063/1.2990657]
  22. M. D. McCluskey and S. J. Jokela, J. Appl. Phys., 106, 071101 (2009). [DOI: https://doi.org/10.1063/1.3216464]
  23. J. Yao, N. Xu, S. Deng, J. Chen, J. She, H. P. David Shieh, P. T. Liu, and Y. P. Huang, IEEE Trans. Electron Dev., 58, 1121 (2011). [DOI: https://doi.org/10.1109/TED.2011.2105879]
  24. F. T. Liu, S. F. Gao, S. K. Pei, S. C. Tseng, and C.H.J. Liu, J. Taiwan Inst. Chem. Eng., 40, 528 (2009). [DOI: https://doi.org/10.1016/j.jtice.2009.03.008]