DOI QR코드

DOI QR Code

Study on Aerosol Deposition Behavior of Cu Films According to Particle Size

입자 사이즈에 따른 Cu 필름의 에어로졸 성막 거동에 대한 연구

  • Lee, Dong-Won (Material Technology Center, Korea Testing Laboratory) ;
  • Oh, Jong-Min (Department of Electronic Materials Engineering, Kwangwoon University)
  • 이동원 (한국산업기술시험원 재료기술센터) ;
  • 오종민 (광운대학교 전자재료공학과)
  • Received : 2017.02.13
  • Accepted : 2017.02.25
  • Published : 2017.04.01

Abstract

The effect of particle sizes on the aerosol deposition (AD) of Cu films is investigated in order to understand the deposition behaviors of metal powder during the AD process. The Cu coatings fabricated by using $2{\mu}m$ Cu powders had a dense microstructure, a high deposition rate ($1.6{\pm}0.2{\mu}m/min$), and low resistance ($9.42{\pm}0.4{\mu}{\Omega}{\cdot}cm$) compared to that from using Cu powder with a particle size greater than $5{\mu}m$. Also, from estimating the internal micro-strain of Cu films, the Cu coatings fabricated by using $2{\mu}m$ Cu particles exhibited a high micro-strain value of $3.307{\times}10^{-3}$. On the other hand, the strain of Cu coatings fabricated with $5{\mu}m$ particles was decreased to $2.76{\times}10^{-3}$. These results seem to show that the impacted Cu particles are compressed and flattened by shock waves, and that their bonding is associated with the high internal micro-strain caused by plastic deformation.

Keywords

References

  1. B. T. Lee, S. Hayashi, T. Hirai, and K, Hiraga, Mater. Trans., 34, 573 (1993). [DOI: http://doi.org/10.2320/matertrans1989.34.573]
  2. J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). [DOI: http://doi.org/10.1111/j.1551-2916.2006.01030.x]
  3. J. Akedo, J. Therm. Spray Technol., 17, 181 (2008). [DOI: http://doi.org/10.1007/s11666-008-9163-7]
  4. Y. Imanaka, N. Hayashi, M. Takenouchi, and J. Akedo, J. Eur. Ceram. Soc., 27, 2789 (2007). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2006.11.055]
  5. J. M. Oh and S. M. Nam, Jpn. J. Appl. Phys., 48, 09KA07 (2009). [DOI: https://doi.org/10.1143/jjap.48.09ka07]
  6. J. Ryu, D. S. Park, B. D. Hahn, J. J. Choi, W. H. Yoon, K. Y. Kim, and H. S. Yun, Appl. Catal. B, 83, 1 (2008). [DOI: https://doi.org/10.1016/j.apcatb.2008.01.020]
  7. T. Fujihara, M. Tsukamoto, N. Abe, S. Miyake, T. Ohji, and J. Akedo, Vacuum, 73, 629 (2004). [DOI: https://doi.org/10.1016/j.vacuum.2003.12.082]
  8. D. W. Lee, M. C. Shin, Y. N. Kim, and J. M. Oh, Ceram. Int., 43, 1044 (2017). [DOI: https://doi.org/10.1016/j.ceramint.2016.10.037]
  9. J. Akedo and M. Lebedev, Jpn. J. Appl. Phys., 41, 6980 (2002). [DOI: https://doi.org/10.1143/jjap.41.6980]
  10. D. W. Lee, H. J. Kim, and S. M. Nam, J. Korean Phys. Soc., 57, 1115 (2010). [DOI: https://doi.org/10.3938/jkps.57.1115]
  11. D. M. Chun and S. H. Ahn, Acta Mater., 59, 2693 (2011). [DOI: https://doi.org/10.1016/j.actamat.2011.01.007]
  12. D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun, and S. M. Nam, J. Am. Ceram. Soc., 94, 3131 (2011). [DOI: http://doi.org/10.1111/j.1551-2916.2011.04493.x]
  13. Y. H. Kim, J. W. Lee, H. J. Kim, Y. H. Yun, S. M. Nam, Ceram. Int., 38S, S201 (2012). [DOI: https://doi.org/10.1016/j.ceramint.2011.04.083]
  14. D. W. Lee, O. Y. Kwon, W. J. Cho, J. K. Song, and Y. N. Kim, Nanoscale Res. Lett., 11, 1 (2016). [DOI: https://doi.org/10.1186/s11671-016-1378-9]
  15. G. K. Williamson and W. H. Hall, Acta Metall., 1, 22 (1953). [DOI: https://doi.org/10.1016/0001-6160(53)90006-6]