• Title/Summary/Keyword: XRD analysis

Search Result 2,602, Processing Time 0.028 seconds

Influence of Sulfate on the Early Hydration in the Solidification of Lime-tailings (소석회-광물찌꺼기 고형화의 초기 수화에 미치는 황산염의 영향)

  • Lee, Hyun-Cheol;Min, Kyoung-Won;Yoo, Hwan-Geun
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.535-544
    • /
    • 2013
  • Influence of sulfate on the early hydration in the solidification treatment of abandoned mine tailings was characterized. Solidified specimens using hydrated lime as a binder were prepared with various amounts of added $Na_2SO_4$ and different curing days. Unconfined compressive strength measurement, heavy metal leaching test, XRD analysis were performed after 7-, 14- and 28-days curing. According to curing days strength of solidified specimens using only distilled water increased but those with addition of $Na_2SO_4$ decreased. External cracks of specimens developed definitely with increasing $Na_2SO_4$ concentration and curing days. Concentrations of Cu, Cd, Zn, and As in the leached solutions from solidified specimens decreased significantly but Pb was leached readily in cases of hydrated lime dosage more than 10 wt%. Gypsum and $MgSO_4$ were identified in the cracked solidified specimens by XRD analysis, and pillar-shaped crystals of SEM image were identified as gypsum in reference with EDS analysis. Crystallization of sulfate in the process of lime-tailing solidification caused cracking, which should be supplemented for solidification treatment of highly sulfur-contained tailing.

A Study of Methane Partial Oxidation Characteristics on CuFe2O4 (CuFe2O4을 이용한 메탄부분산화 특성 연구)

  • Woo, Sung Woung;Kang, Yong;Kang, Kyoung Soo;Kim, Chang Hee;Kim, Chul Sung;Park, Chu Sik
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1113-1118
    • /
    • 2008
  • Characteristics of reduction properties and carbon deposition of $CuFe_2O_4$ and $Fe_3O_4$ were investigated by using TGA, XRD, SEM, TEM and gas analysis at $900^{\circ}C$. XRD analyses indicated that the reduced $Fe_3O_4$ was composed of Fe, graphite and $Fe_3C$ phases. In contrast, the reduced $CuFe_2O_4$ did not show the graphite or $Fe_3C$ phases. It was observed by SEM analysis that the surface of the $Fe_3O_4$ was completely covered with carbon, after methane partial oxidation. From gas analysis, $CuFe_2O_4$ showed much higher methane conversion and reduction kinetics as compared to the $Fe_3O_4$ under the same reaction conditions and the estimated carbon deposition amounts on the reduced $CuFe_2O_4$ was much lower than those on the reduced $Fe_3O_4$ during the syngas production process. It was found by TEM that carbon on the reduced $Fe_3O_4$ particles has a platelet shape.

A study on the pyrolysis of lithium carbonate for conversion of lithium hydroxide from lithium carbonate (탄산리튬으로부터 수산화리튬 전환을 위하여 탄산리튬의 열분해에 대한 연구)

  • Park, Jae Eun;Park, Min Hwa;Seo, Hyeong Jun;Kim, Tae Seong;Kim, Dae Weon;Kim, Bo Ram;Choi, Hee Lack
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.2
    • /
    • pp.89-95
    • /
    • 2021
  • Research on the production of lithium hydroxide (LiOH) has been actively conducted in response to the increasing demand for high nickel-based positive electrode materials for lithium-ion batteries. Herein we studied the conversion of lithium oxide (Li2O) through thermal decomposition of lithium carbonate for the production of lithium hydroxide from lithium carbonate (Li2CO3). The reaction mechanism of lithium carbonate with alumina, quartz and graphite crucible during heat treatment was confirmed. When graphite crucible was used, complete lithium oxide powder was obtained. Based on the TG analysis results, reagent-grade lithium carbonate was heat-treated at 700℃, 900℃ and 1100℃ for various time and atmosphere conditions. XRD analysis showed the produced lithium oxide showed high crystallinity at 1100℃ for 1 hour in a nitrogen atmosphere. In addition, several reagent-grade lithium oxides were reacted at 100℃ to convert to lithium hydroxide. XRD analysis confirmed that lithium hydroxide (LiOH) and lithium hydroxide monohydrate (LiOH·H2O) were produced.

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Study on the Evaluation of Thermal Damage According to the Manufacturing Conditions of Korean Paper (한지의 제조 조건에 따른 열 손상 평가 연구)

  • Kim, Ji Won;Park, Se Rin;Han, Ki Ok;Jeong, Seon Hwa
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.648-658
    • /
    • 2021
  • In this study, we aimed to analyze the chemical changes that occur in Korean paper in an accelerated deterioration environment of 105℃. We selected the Korean paper produced with different types of cooking agents (plant lye, Na2CO3) and during different manufacturing seasons (winter, summer). The degree of deterioration of the Korean paper was confirmed by measuring the brightness, yellowness, and pH level, and the degree of change in each vibrational region of cellulose as deterioration progressed through infrared (FT-IR) spectroscopy. The FT-IR analysis showed that, as deterioration progressed, the absorbance of the amorphous region in cellulose decreased, whereas the absorbance of the crystalline region slightly increased. X-Ray diffraction (XRD) analysis and Raman spectroscopy were performed to verify the changes in the crystalline and amorphous regions in cellulose indicated by the FT-IR results. Furthermore, the crystallinity index (CI) was calculated; it showed a slight increase after deterioration; therefore, CI was confirmed to follow the same trend as that observed for absorbance in the FT-IR results. In addition, as a result of Raman spectroscopic analysis, the degree of decomposition of the amorphous region in the cellulose under the manufacturing conditions was confirmed by the fluorescence measured after the deterioration.

The Phase Analysis of MgB2 Fabricated by Spark Plasma Sintering after Ball Milling (볼 밀링 후 방전플라즈마 소결법에 의해 제조된 MgB2의 상 분석)

  • Kang, Deuk-Kyun;Choi, Sung-Hyun;Ahn, In-Shup
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.371-377
    • /
    • 2008
  • This paper deals with the phase analysis of $MgB_2$ bulk using spark plasma sintering process after ball milling. Mg and amorphous B powders were used as raw materials, and milled by planetary-mill for 9 hours at argon atmosphere. In order to confirm formation of $MgB_2$ phase, DTA and XRD were used. The milled powders were fabricated to $MgB_2$ bulk at the various temperatures by Spark Plasma Sintering. The fabricated $MgB_2$ bulk was evaluated with XRD, EDS, FE-SEM and PPMS. In the DTA result, reaction on formation of $MgB_2$ phase started at $340^{\circ}C$. This means that ball milling process improves reactivity on formation of $MgB_2$ phase. The $MgB_2$ MgO and FeB phases were characterized from XRD result. MgO and FeB were undesirable phases which affect formation of $MgB_2$ phase, and it's distribution could be confirmed from EDS mapping result. Spark Plasma Sintered sample for 5 min at $700^{\circ}C$ was relatively densified and it's density and transition temperature showing super conducting property were $1.87\;g/cm^3$ and 21K.

Molecular Orientation of Intercalants Stabilized in the Interlayer Space of Layered Ceramics: 1-D Electron Density Simulation

  • Yang, Jae-Hun;Pei, Yi-Rong;Piao, Huiyan;Vinu, Ajayan;Choy, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.417-428
    • /
    • 2016
  • In this review, an attempt is made to calculate one-dimensional (1-D) electron density profiles from experimentally determined (00l) XRD intensities and possible structural models as well in an effort to understand the collective intracrystalline structures of intercalant molecules of two-dimensional (2-D) nanohybrids with heterostructures. 2-D ceramics, including layered metal oxides and clays, have received much attention due to their potential applicability as catalysts, electrodes, stabilizing agents, and drug delivery systems. 2-D nanohybrids based on such layered ceramics with various heterostructures have been realized through intercalation reactions. In general, the physico-chemical properties of such 2-D nanohybrids are strongly correlated with their heterostructures, but it is not easy to solve the crystal structures due to their low crystallinity and high anisotropic nature. However, the powder X-ray diffraction (XRD) analysis method is thought to be the most powerful means of understanding the interlayer structures of intercalant molecules. If a proper number of well-developed (00l) XRD peaks are available for such 2-D nanohybrids, the 1-D electron density along the crystallographic c-axis can be calculated via a Fourier transform analysis to obtain structural information about the orientations and arrangements of guest species in the interlayer space.

Preparation and characterization of magnetic nanoparticles with two kinds of core/shell structures (핵/껍질 구조를 가진 두 종류의 자기 나노입자의 제조와 특성비교)

  • 고영재;손인호;김영국;동성용;이근진;박규섭
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2001
  • Magnetic Fe-Co(C) nanocapsules and Fe-Co nanoparticles were prepared by arc-discharge in two kinds of atmospheres, i.e. methane and a mixture of ($H_2$+Ar), respectively. Characterization and magnetic properties of this two kinds of ultrafine particles were investigated systematically by means of X-ray diffraction, Mssbauer spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy disperse spectroscopy analysis, chemical analysis, oxygen determination and magnetization measurement. Effects of carbon element, decomposed from a methane atmosphere in carbon arc process, on phase structures, magnetic states and surface characterization were studied in comparison to that of Ar element. Two ultrafine particles showed a little difference in the weight ratio of (Fe/co) and the size for Fe-Co nanoparticles was about two times bigger than Fe-Co(C) nanocapsules. The saturation magnetization of Fe-Co (C) nanocapsules was about 8% higher than that of Fe-Co nanoparticles while their phase constitutions were similar. Although no carbon could be detected by XRD measurement because of extremely thin shells on the surfaces of the cores, it is still believed that they are carbon and oxygen layers.

  • PDF

Study on thermal behavior of Ammonium Hexafluofide Titanate for Synthesis of TiO2 Powders (TiO2 분말 합성을 위한 Ammonium Hexafluofide Titanate의 열적 거동 연구)

  • Lee, Duk-Hee;Park, Jae-Ryang;Lee, Chan-Gi;Park, Kyung-Soo;Kim, Hyeon-Mo
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.353-357
    • /
    • 2016
  • In this study, $TiO_2$ powders are synthesized from ammonium hexafluoride titanate (AHFT, $(NH_4)_2TiF_6$) as a precursor by heat treatment. First, we evaluate the physical properties of AHFT using X-ray diffraction (XRD), particle size analysis (PSA), thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Then, to prepare the $TiO_2$ powders, is heat-treated at $300-1300^{\circ}C$ for 1 h. The ratio of anatase to rutile phase in $TiO_2$ is estimated by XRD. The anatase phase forms at $500^{\circ}C$ and phase transformation to the rutile phase occurs at $1200^{\circ}C$. Increase in the particle size is observed upon increasing the reaction temperature, and the phase ratio of the rutile phase is determined from a comparison with the calculated XRD data. Thus, we show that anatase and rutile $TiO_2$ powders could be synthesized using AHFT as a raw material, and the obtained data are utilized for developing a new process for producing high-quality $TiO_2$ powder.

Damages of Etched (Ba, Sr) $TiO_3$Thin Films by Inductively Coupled Plasmas (유도결합 플라즈마에 의한 (Ba,Sr)$TiO_3$박막의 식각 손상에 관한 연구)

  • 최성기;김창일;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.785-791
    • /
    • 2001
  • High dielectric (Ba, Sr) TiO$_3$ thin films were etched in an inductively coupled plasma (ICP) as a function of Cl$_2$/Ar mixing ration. Under Cl$_2$(20)/Ar(80), the maximum etch rate of the BST films was 400 $\AA$/mim and selectivities of BST to Pt and PR were obtained 0.4 and 0.2, respectively. Etching products were redeposited on the surface of BST and resulted in varying the nature of crystallinity. Therefore, we investigated the etched surface of BST by x-ray photoelectron spectroscopy (XPS) atomic force microscopy (AFM) and x-ray diffraction (XRD). From the result of XPS analysis, we found that residues of Ba-Cl and Ti-Cl bonds remained on the surface of the etched BST for high boiling point. The morphology of the etched surfact was analyzed by AFM. A smoothsurface(roughness ~2.8nm) ws observed under Cl$_2$(20)/Ar(80), rf power of 600 W, dc bias voltage of -250 V and pressure of 10 mTorr. This changed the nature of the crystallinity of BST. From the result of XRD analysis, the crystallinities of the etched BST film under Ar only and Cl$_2$(20)/Ar(80) were maintained as similar to as-deposited BST. However, intensity of BST(100) orientation under Cl$_2$ only plasma was abruptly decreased. This indicated that CI compounds were redeposited on the etched BST surface and resulted in changed of the crystallinity of BST during the etch process.

  • PDF