Acknowledgement
Supported by : 과학기술부
References
- Bak, Y. C. and Cho, K. J., 'Status for the Technology of Hydrogen Production from Natural Gas,' Korean Chem. Eng. Res., 43, 344-351(2005)
- Pena, M. A., Gomez, J. P. and Fierro, J. L. G., 'New Catalytic Routes for Syngas and Hydrogen Production,' Appl, catal. A: Gen., 144, 7-57(1996) https://doi.org/10.1016/0926-860X(96)00108-1
- Craciun, R., Shereck, B. and Gorte, R. J., 'Kinetic Studies of Methane Steam Reforming on Ceria-supported Pd,' Catal. Lett., 51, 149-153(1998) https://doi.org/10.1023/A:1019022009310
-
Luo, J. Z., Yu, Z. L., Ng, C. F. and Au, C. T., '
$CO_2/CH_4$ Reforming over$Ni-La_2O_3/5A$ : An Investigation on Carbon Deposition and Reaction Steps,' J. Catal., 194(2), 198-210(2000) https://doi.org/10.1006/jcat.2000.2941 - Inui, T., Ichino, K., Matsuoka, I., Takeguchi, T., Iwamoto, S., Pu, S. B. and Nishimito, S. I., 'Ultra-rapid Synthesis of Syngas by the Catalytic Reforming of Methane Enhanced by In-situ Heat Supply Through Combustion,' Korean J. Chem. Eng., 14(6), 441-444(1997)
- Kim, S. B., Shin, K. S., Park, E. S., Kwak, Y. C., Cheon, H. J. and Hahm, H. S., 'Partial Oxidation of Methane of Synthesis Gas over Ni Catalysts,' HWAHAK KONGHAK, 41, 20-25(2003)
- Onstot, W. J., Minet, R. G. and Tsotsis, T. T., 'Design Aspects of Membrane Reactors for Dry Reforming of Methane for the Production of Hydrogen,' Ind. Eng. Chem. Res., 40(1), 242-251(2001) https://doi.org/10.1021/ie0003685
- Steinfeld, A., Kuhn, P., Reller, A., Palumbo, R., Murray, J. and Tamaura, Y., 'Solar-processed Metals as Clean Energy Carriers and Water-splitters,' Int. J. Hydrogen Energy, 23, 767-774(1998) https://doi.org/10.1016/S0360-3199(97)00135-3
- Steinfeld, A., Brack, M., Meier, A., Weidenkaff, A. and Wuillemin, D., 'A Solar Chemical Reactor for Co-production Zinc and Synthesis Gas,' Energy, 23, 803-814(1998) https://doi.org/10.1016/S0360-5442(98)00026-7
- Kodama, T., Shimizu, T., Satoh, T., Nakata, M. and Shimizu, K. I., 'Stepwise Production of Co-rich Syngas and Hydrogen via Solar Methane Reforming by using a Ni(II)-ferrite REDOX Sys-tem,' Solar Energy, 73, 363-374(2002) https://doi.org/10.1016/S0038-092X(02)00112-3
-
Kodama, T., Ohtake, H., Matsumoto, S., Aoki, A., Shimizu, T. and Kitayama, Y., 'Thermochemical Methane Reforming using a Reactive
$WO_3/W$ Redox System,' Energy, 25, 411-425(2004) https://doi.org/10.1016/S0360-5442(99)00084-5 - Trimm, D. L., 'Catalysts for the Control of Coking during Steam Reforming,' Catal. Today, 49, 3-10(1999) https://doi.org/10.1016/S0920-5861(98)00401-5
- Avdeeva, L. B., Goncharova, O. V., Kochubey, D. I., Zaikovskii, V. I., Plyasova, L. M., Novgorodov, B. N. and Shaikhutdinov, Sh. K., 'Coprecipitated Ni-alumina and Ni-Cu-alumina Catalysts of Methane Decomposition and Carbon Deposition,' Appl. Catal. A, 141, 117-129(1996) https://doi.org/10.1016/0926-860X(96)00026-9
- Cho, P., Mattisson, T. and Lyngfelt, A., 'Carbon Formation on Nickel and Iron Oxide-containing Oxygen Carriers for Chemicallooping Combustion,' Ind. Eng. Chem. Res., 44, 668-676(2005) https://doi.org/10.1021/ie049420d
-
Li, Y., Chen, J., Chang, L. and Qin, Y., 'The Doping Effect of Copper on the Catalytic Growth of Carbon Fibers from Methane over a
$Ni/Al_2O_3$ Catalyst Prepared from Feitknecht Compound Precursor,' J. Catal., 178, 76-83(1998) https://doi.org/10.1006/jcat.1998.2119 -
Li, J., Lu, G., Li, K. and Wang, W., 'Active
$Nb_2O_5$ -supported Nickel and Nickel-Copper Catalysts for Methane Decomposition to Hydrogen and Filamentous Carbon,' Journal of Molecular Catalysis A, 221, 105-112(2004) https://doi.org/10.1016/j.molcata.2004.06.015 - Kim, M. S. and Kim, D. Y., 'Application of Catalytically Grown Carbon Nanofiber in Double Layer Capacitor (I),' HWAHAK KONGHAK, 36, 34-44(1998)
- Baker, R. T. K., Barber, M. A., Harris, P. S. and Feates, F. S., Waite, R. J., 'Nucleation and Growth of Carbon Deposits from the Nickel Catalyzed Decomposition of Acetylene,' J. Catal., 26, 51-62(1972) https://doi.org/10.1016/0021-9517(72)90032-2