핵/껍질 구조를 가진 두 종류의 자기 나노입자의 제조와 특성비교

Preparation and characterization of magnetic nanoparticles with two kinds of core/shell structures

  • 발행 : 2001.04.01

초록

자기 Fe-Co(C)나노(nano)캡슐과 Fe-Co 나노입자들이 메탄과 혼합기체($H_2$+Ar) 두 종류의 분위기속에서 각각 아크방전으로 제조되었다. 이 두 종류의 초미세 입자들의 특성과 자기적 성질들을 XRD(X-ray Diffraction), Mossbauer 분광, XPS(X-ray Photoelectron Spectroscopy), TEM(transmission Electron Microscopy), EDS(Energy Disperse Spectroscopy), 화학적 분석, 산소량 측정과 자기 측정 등을 통하여 체계적으로 조사하였다. 메탄기체로부터 분해되어 나온 탄소원소가 미세입자들의 상구조, 자기적 상태 그리고 표면 특성들에 끼치는 효과를 아르곤원소를 사용했을 때와 비교하였다. 두 미세입자에서의 Fe/Co 질량비가 약간 다르게 나타났으며 Fe-Co나노입자의 크기가 Fe-Co(C)나노캡슬보다 약 두배였다. 또한 Fe-Co(C)나노캡슐의 포화자화값이 Fe-Co 나노입자보다 약 8% 높았으며 둘 다 유사한 상구조를 보였다. 핵 표면에 쌓인 껍질들이 매우 얇아 XRD측정으로는 그 존재를 탐지하기 어려웠으나 XPS분석을 통하여 그들이 탄소층과 산소층임을 결론지을 수 있었다.

Magnetic Fe-Co(C) nanocapsules and Fe-Co nanoparticles were prepared by arc-discharge in two kinds of atmospheres, i.e. methane and a mixture of ($H_2$+Ar), respectively. Characterization and magnetic properties of this two kinds of ultrafine particles were investigated systematically by means of X-ray diffraction, Mssbauer spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, energy disperse spectroscopy analysis, chemical analysis, oxygen determination and magnetization measurement. Effects of carbon element, decomposed from a methane atmosphere in carbon arc process, on phase structures, magnetic states and surface characterization were studied in comparison to that of Ar element. Two ultrafine particles showed a little difference in the weight ratio of (Fe/co) and the size for Fe-Co nanoparticles was about two times bigger than Fe-Co(C) nanocapsules. The saturation magnetization of Fe-Co (C) nanocapsules was about 8% higher than that of Fe-Co nanoparticles while their phase constitutions were similar. Although no carbon could be detected by XRD measurement because of extremely thin shells on the surfaces of the cores, it is still believed that they are carbon and oxygen layers.

키워드

참고문헌

  1. Nature v.347 W. $Kr\"{a}tschmer$;L. D. Lamb;K. Fostiropoulos;D. R. Huffman
  2. J. Phys. Chem. v.95 Y. Chai;T. Guo;C. Jin;R. E. Haufler;L. P. F. Chibante;J. Fure;L. Wang;J. M. Alfor;R. E. Smally
  3. Nature v.354 S. Iijima
  4. J. Phys. Chem. v.98 Y. Saito;M. Okudad;T. Yoshikaya;A. Kasuya;Y. Nishina
  5. J. Appl. Phys. v.80 S. Seraphin;D. Zhou;J. Jiao
  6. Science v.259 R. S. Ruoff;D. C. Lorents;B. Chan;R. Malhotra;S. Subramony
  7. Jpn. J. Appl. Phys. v.32 M. Tomita;Y. Saito;T. Hayashi
  8. Phys. Rev. B v.B48 S. A. Majetich;J. O. Artman;M. E. Mchenry;N. T. Nuhfer;S. W. Staley
  9. J. Appl. Phys. v.75 E. M. Brunsman;R. Sutton;E. Bortz;S. Kirkpartrick;K. Midelfort;J. Williams;P. Smith;M. E. Mchenry;S. A. Majetich;J. O. Artman;M. De Graef;S. W. Staley
  10. Nature v.374 V. P. Dravid;J. J. Host;M. H. Teng;B. Elliott;J. Hwang;D. L. Johnson;T. O. Mason;J. R. Weertman
  11. J. Appl. Phys. v.75 Y. Saito;T. Yoshikawa;M. Okuda;N. Fujimoto
  12. Nature v.381 T. Hayashi;S. Hirono;M. Tomita;S. Umemura
  13. IEEE Trans.,Mag. v.28 E. S. Murdock;S. F. Simmons;R. Davison
  14. IEEE Trans. Mag. v.29 T. Yogi;T. A. Nguyen
  15. J. Mater. Sci. v.33 X. L. Dong;Z. D. Zhang;Q. F. Xiao;X. G. Zhao;Y. C. Chuang;S. R. Jin;W. M. Sun
  16. Nanostr. Mater. v.10 X. L. Dong;Z. D. Zhang;S. R. Jin;W. M. Sun;Y. C. Chuang
  17. J. Mater. Res. v.14 X. L. Dong;Z. D. Zhang;X. G. Zhao;Y. C. Chuang;S. R. Jin
  18. Phys. Rev. B v.60 X. L. Dong;Z. D. Zhang;Y. C. Chaung;S. R. Jin