DOI QR코드

DOI QR Code

Study on thermal behavior of Ammonium Hexafluofide Titanate for Synthesis of TiO2 Powders

TiO2 분말 합성을 위한 Ammonium Hexafluofide Titanate의 열적 거동 연구

  • Lee, Duk-Hee (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Park, Jae-Ryang (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Lee, Chan-Gi (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Park, Kyung-Soo (Advanced Materials & Processing Center, Institute for Advanced Engineering) ;
  • Kim, Hyeon-Mo (Monolith Co. Ltd.)
  • 이덕희 (고등기술연구원 신소재공정센터) ;
  • 박재량 (고등기술연구원 신소재공정센터) ;
  • 이찬기 (고등기술연구원 신소재공정센터) ;
  • 박경수 (고등기술연구원 신소재공정센터) ;
  • 김현모 ((주)모노리스)
  • Received : 2016.08.04
  • Accepted : 2016.08.31
  • Published : 2016.10.28

Abstract

In this study, $TiO_2$ powders are synthesized from ammonium hexafluoride titanate (AHFT, $(NH_4)_2TiF_6$) as a precursor by heat treatment. First, we evaluate the physical properties of AHFT using X-ray diffraction (XRD), particle size analysis (PSA), thermogravimetric analysis (TGA), and field-emission scanning electron microscopy (FE-SEM). Then, to prepare the $TiO_2$ powders, is heat-treated at $300-1300^{\circ}C$ for 1 h. The ratio of anatase to rutile phase in $TiO_2$ is estimated by XRD. The anatase phase forms at $500^{\circ}C$ and phase transformation to the rutile phase occurs at $1200^{\circ}C$. Increase in the particle size is observed upon increasing the reaction temperature, and the phase ratio of the rutile phase is determined from a comparison with the calculated XRD data. Thus, we show that anatase and rutile $TiO_2$ powders could be synthesized using AHFT as a raw material, and the obtained data are utilized for developing a new process for producing high-quality $TiO_2$ powder.

Keywords

References

  1. H. Chang, J. Ma, Z. Zhao and L. Qi: Chem. Mater., 7 (1995) 663. https://doi.org/10.1021/cm00052a010
  2. B. S. Lee, D. Y. Shin and S. M. Han: J. Korean Ceram. Soc., 37 (2000) 308.
  3. J. Yang, S. Mei and J. M. Ferreira: J. American Ceramic Soc., 83 (2000) 1361. https://doi.org/10.1111/j.1151-2916.2000.tb01394.x
  4. J. G. Kim and I. C. Kang: J. Korean Powder Metall. Inst., 19 (2012) 196. https://doi.org/10.4150/KPMI.2012.19.3.196
  5. H. S. Park, S. Y. Joo, J. P. Choi and W. B. Kim: J. Korean Powder Metall. Inst., 22 (2015) 396. https://doi.org/10.4150/KPMI.2015.22.6.396
  6. L. Gao and Q. Zhang: Materials Transactions, 42 (2001) 1676. https://doi.org/10.2320/matertrans.42.1676
  7. S. O. Choi, J. H. Cho, W. Y. Kim and S. W. Lim: Korean J. Met. Mater., 50 (2012) 523. https://doi.org/10.3365/KJMM.2012.50.7.523
  8. J. H. Braun, A. Baidins and R. E. Marganski: Prog. Org. Coat., 20 (1992) 105. https://doi.org/10.1016/0033-0655(92)80001-D
  9. A. S. Attar, M. S. Chamsari, F. Hajesmaeilbaigi and S. Mirdamadi: J. Mater. Sci., 43 (2008) 1723. https://doi.org/10.1007/s10853-007-2244-z
  10. H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida: J. Mater. Chem., 11 (2001) 1694. https://doi.org/10.1039/b008974p
  11. T. Sugimoto, X. Zhou and A. Muramastu: J. Colloid Interface Sci., 259 (2003) 53. https://doi.org/10.1016/S0021-9797(03)00035-3
  12. N. Venkatachalam, M. Palanichamy and V. Murugesan: Mater. Chem. Phys., 104 (2007) 454. https://doi.org/10.1016/j.matchemphys.2007.04.003
  13. A. Y. Zhang, L. L. Long, C. Liu, W. W. Li and H. Q. Yu: Green Chem., 16 (2014) 2745. https://doi.org/10.1039/c3gc42167h
  14. H. J. Noh, J. K. Lee, D. S. Seo and K. H. Hwang: J. Kor. Ceram. Soc., 39 (2002)
  15. H. Nishzawa, N. Yamasaki and K. Matsuoka: J. Am. Ceram. Soc., 65 (1982) 343. https://doi.org/10.1111/j.1151-2916.1982.tb10467.x
  16. S. D. Mo and W. Y. Ching: Phys. Rev. B, 51 (1995) 13023. https://doi.org/10.1103/PhysRevB.51.13023
  17. O. Carp, C. L. Huisman and A. Reller: Prog. Solid State Chem., 21 (2004) 33.
  18. J. Kim, K. C. Song, S. Foncillas and S. Pratsinis: J. Eur. Ceram. Soc., 21 (2001) 2863. https://doi.org/10.1016/S0955-2219(01)00222-9
  19. T. B. Ghosh, S. Dhabal and A. K. Datta: J. Appl. Phys., 94 (2003) 4577. https://doi.org/10.1063/1.1604966
  20. M. Hirano, N. Nakahara, K. Ota, O. Tanaike and N. Inagaki: J. Solid State Chem., 170 (2003) 39. https://doi.org/10.1016/S0022-4596(02)00013-0
  21. J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet and J. R. Morante: J. Appl. Phys., 92 (2002) 85.

Cited by

  1. Photocatalytic activity of rutile TiO2 powders coupled with anatase TiO2 nanoparticles using surfactant vol.25, pp.3, 2018, https://doi.org/10.4150/KPMI.2018.25.3.257