• Title/Summary/Keyword: X

Search Result 46,291, Processing Time 0.058 seconds

CUSP FORMS IN S40 (79)) AND THE NUMBER OF REPRESENTATIONS OF POSITIVE INTEGERS BY SOME DIRECT SUM OF BINARY QUADRATIC FORMS WITH DISCRIMINANT -79

  • Kendirli, Baris
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.3
    • /
    • pp.529-572
    • /
    • 2012
  • A basis of a subspace of $S_4({\Gamma}_0(79))$ is given and the formulas for the number of representations of positive integers by some direct sums of the quadratic forms $x^2_1+x_1x_2+20x^2_2$, $4x^2_1{\pm}x_1x_2+5x^2_2$, $2x^2_1{\pm}x_1x_2+10x^2_2$ are determined.

A NOTE ON BITRANSFORMATION GROUPS

  • Song, Hyung Soo
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.227-232
    • /
    • 2006
  • We study some dynamical properties in the context of bitransformation groups, and show that if (H,X,T) is a bitransformation group such that (H,X) is almost periodic and (X/H,T) is pointwise almost periodic $T_2$ and $x{\in}X$, then $E_x=\{q{\in}E(H,X){\mid}qx{\in}{\overline{xT}\}$ is a compact $T_2$ topological group and $E_{qx}=E_x(q{\in}E(H,X))$ when H is abelian, where E(H,X) is the enveloping semigroup of the transformation group (H,X).

  • PDF

ON UNIFORMLY ULTRASEPARATING FAMILY OF FUNCTION ALGEBRAS

  • Hwang, Sunwook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.125-134
    • /
    • 1993
  • Let X be a compact Hausdorff space, and let C(X) (resp. $C_{R}$(X)) be the complex (resp. real) Banach algebra of all continuous complex-valued(resp. real-valued) functions on X with the pointwise operations and the supremum norm x. A Banach function algebra on X is a Banach algebra lying in C(X) which separates the points of X and contains the constants. A Banach function algebra on X equipped with the supremum norm is called a uniform algebra on X, that is, a uniformly closed subalgebra of C(X) which separates the points of X and contains the constants.s.

  • PDF

MINIMAL QUASI-F COVERS OF SOME EXTENSION

  • Kim, Chang Il;Jung, Kap Hun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.427-433
    • /
    • 2013
  • Observing that every Tychonoff space X has an extension $kX$ which is a weakly Lindel$\ddot{o}$f space and the minimal quasi-F cover $QF(kX)$ of $kX$ is a weakly Lindel$\ddot{o}$f, we show that ${\Phi}_{kX}:QF(kX){\rightarrow}kX$ is a $z^{\sharp}$-irreducible map and that $QF({\beta}X)=QF(kX)$. Using these, we prove that $QF(kX)=kQF(X)$ if and only if ${\Phi}^k_X:kQF(X){\rightarrow}kX$ is an onto map and ${\beta}QF(X)=(QF{\beta}X)$.

CHARACTERIZATIONS OF THE POWER FUNCTION DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2007
  • In this paper, we present characterizations of the power function distribution by the independence of record values. We establish that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. And we prove that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0; if and only if $\frac{X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$. Also we characterize that $X{\in}$ POW(1, ${\nu}$) for ${\nu}$ > 0, if and only if $\frac{X_{L(n)}+X_{L(n+1)}}{X_{L(n)}-X_{L(n+1)}}$ and $X_{L(n)}$ are independent for $n{\geq}1$.

  • PDF

STABILITY OF MULTIPLICATIVE INVERSE FUNCTIONAL EQUATIONS IN THREE VARIABLES

  • Lee, Eun-Hwi
    • Honam Mathematical Journal
    • /
    • v.34 no.1
    • /
    • pp.45-54
    • /
    • 2012
  • In this paper, we prove stabilities of multiplicative functional equations in three variables such as $r(\frac{x+y+z}{3})-r(x+y+z)$=$\frac{2r(\frac{x+y}{2})r(\frac{y+z}{2})r(\frac{z+x}{2})}{r(\frac{x+y}{2})r(\frac{y+z}{2})+r(\frac{y+z}{2})r(\frac{z+x}{2})+r(\frac{z+x}{2})r(\frac{x+y}{2})}$ and $r(\frac{x+y+z}{3})+r(x+y+z)$=$\frac{4r(\frac{x+y}{2})r(\frac{y+z}{2})r(\frac{z+x}{2})}{r(\frac{x+y}{2})r(\frac{y+z}{2})+r(\frac{y+z}{2})r(\frac{z+x}{2})+r(\frac{z+x}{2})r(\frac{x+y}{2})}$.

SOME CHARACTERIZATIONS OF SINGULAR COMPACTIFICATIONS

  • Park, Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.4
    • /
    • pp.943-947
    • /
    • 1995
  • Assume that X is locally compact and Hausdorff. Then, we show that $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if for any 2-point compatification $\gamma X$ of X with $\gamma X - X = {-\infty, +\infty}$, there exists a clopen subset A of \gamma X$ such that $-\infty \in A$ and $+\infty \notin A$. As a corollary, we obtain that if X is connected and locally connected, then $\alpha X = sup {X \cup_f S(f)$\mid$f \in S^{\alpha}}$ for any compactification $\alpha X$ of X if and only if X is 1-complemented.

  • PDF

THE EXPONENTIAL GROWTH AND DECAY PROPERTIES FOR SOLUTIONS TO ELLIPTIC EQUATIONS IN UNBOUNDED CYLINDERS

  • Wang, Lidan;Wang, Lihe;Zhou, Chunqin
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1573-1590
    • /
    • 2020
  • In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x)Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.

JORDAN DERIVATIONS ON SEMIPRIME RINGS AND THEIR RADICAL RANGE IN BANACH ALGEBRAS

  • Kim, Byung Do
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that $D^2(x)[D(x),x]=0$ or $[D(x),x]D^2(x)=0$ for all $x{\in}R$. In this case we have $f(x)^5=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $D^2(x)[D(x),x]{\in}rad(A)$ or $[D(x),x]D^2(x){\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

CHARACTERIZATIONS OF THE WEIBULL DISTRIBUTION BY THE INDEPENDENCE OF RECORD VALUES

  • Chang, Se-Kyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.279-285
    • /
    • 2008
  • This paper presents some characterizations of the Weibull distribution by the independence of record values. We prove that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. We show that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent. And we establish that $X{\sim}Weibull(1,{\alpha})$, ${\alpha}>0$ if and only if $\frac{X_{U(n+1)}+X_{U(n)}}{X_{U(n+1)}-X_{U(n)}}$ and $X_{U(n+1)}$ for $n{\geq}1$ are independent.

  • PDF