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MINIMAL QUASI-F COVERS OF SOME EXTENSION

Chang Il Kim* and Kap Hun Jung**

Abstract. Observing that every Tychonoff space X has an exten-
sion kX which is a weakly Lindelöf space and the minimal quasi-F
cover QF (kX) of kX is a weakly Lindelöf, we show that ΦkX :

QF (kX) → kX is a z#-irreducible map and that QF (βX) =
βQF (kX). Using these, we prove that QF (kX) = kQF (X) if

and only if Φk
X : kQF (X) → kX is an onto map and βQF (X) =

QF (βX).

1. Introduction

All spaces in this paper are assumed to be Tychonoff and βX (vX,
resp.) denotes the Stone-Čech compactification (Hewitt realcompactifi-
cation, resp.) of X.

Iliadis constructed the absolute of a Hausdorff space X, which is
the minimal exteamally disconnected cover (E(X), πX) of X and they
turn out to be the perfect onto projective covers ([6]). To generalize
extremally disconnected spaces, basically disconnected spaces, quasi-F
spaces and cloz-spaces have been introduced and their minimal covers
have been studied by various aurthors ([1], [4], [5], [8], [9]). In these
ramifications, minimal covers of compact spaces can be nisely charac-
terized.

In particular, Henriksen and Gillman intoduced the concept of quasi-
F spaces in which every dense cozero-set is C∗-embedded ([2]). Each
space X has the minimal quasi-F cover (QF (X),ΦX) ([5]). In [5], au-
thors investigated when βQF (X) = QF (βX) and QF (X) = Φ−1

βX(X),
where (QF (βX), ΦβX) is the minimal quasi-F cover of βX.

It is well-known that each space has the minimal extremally discon-
nected cover (E(X), kX) and that βE(X) = E(βX) ([8]). Moreover,
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internal characterizations of a space X that is equivalent to E(vX) =
vE(X) is known ([8]). Similar results for the minimal basically discon-
nected cover (ΛX, ΛX) are given by [7].

For any space X, there is an extension (kX, kX) of X such that
(1) kX is a weakly Lindelöf space, and
(2) for any continuous map f : X → Y , there is a continuous map

fk : kX → kY such that fk|X = f([10]).
The purpose to write this paper is to find the relation of the minimal
quasi-F cover QF (kX) of kX and kQF (X). For any space X, we show
that QF (kX) is a weakly Lindelöf space and ΦkX : QF (kX) → kX is
a z# - irreducible map and that QF (βX) = βQF (kX). Moreover, we
show that kQF (X) = QF (kX) if and only if Φk

X : kQF (X) → kX is an
onto map and QF (βX) = βQF (X).

For the termlnology, we refer to [2] and [9].

2. Quasi-F covers

Let X be a space. It is well-known that the collection R(X) of all
regular closed sets in X, when partially ordered by inclusion, becomes a
complete Boolean algebra, in which the join, meet, and complementation
operations are defined as follows :
For any A ∈ R(X) and any F ⊆ R(X),∨F = clX

( ∪ {F | F ∈ F}),∧F = clX
(
intX

( ∩ {F | F ∈ F})), and
A′ = clX(X −A).

A sublattic of R(X) is a subset of R(X) that contains ∅, X and is closed
under finite joins and finite meets ([8]).

A map f : Y → X is called a covering map if it is an onto continuous,
perpect, and irreducible map ([8]).

Lemma 2.1. ([8])
(1) Let X be a dense subspace of Y . Then the map φ : R(Y ) → R(X),

defined by φ(A) = A ∩X, is a Boolean isomorphism.
(2) Let f : Y → X be a covering map. Then the map ψ : R(Y ) →

R(X), defined by ψ(A) = f(A), is a Boolean isomorphism.

In the above lemma, the inverse map φ−1 : R(X) → R(Y ) of φ is given
by φ−1(B) = clY (B)

(
B ∈ R(X)

)
and the inverse map ψ−1 : R(X) →

R(Y ) of ψ is given by ψ−1(B) = clY
(
intY

(
f−1(B)

))
= clY

(
f−1

(
intX(B)

))
(
B ∈ R(X)

)
.
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Definition 2.2. A space X is called a quasi-F space if for any ze-
rosets A,B in X, clX

(
intX(A ∩ B)

)
= clX

(
intX(A)

) ∩ clX
(
intX(B)

)
,

equivalently, every dense cozero-set in X is C∗-embedded in X.

It is well-known that a space X is a quasi-F space if and only if βX
(or vX) is a quasi-F space.

Definition 2.3. Let X be a space. Then a pair (Y, f) is called

(1) a cover of X if f : X → Y is a covering map,
(2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F

space, and
(3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X

and for any quasi-F cover (Z, g) of X, there is a covering map
h : Z → Y such that f ◦ h = g.

Let X be a space, Z(X) = {Z | Z is a zero-set in X} and Z(X)#=
{clX

(
intX(A)

) | A ∈ Z(X)}. Then Z(X)# is a sublattice of R(X).
Suppose that X is a compact space. Let QF (X) = {α | α is a

Z(X)#−ultrafilter} and for any A ∈ Z(X)#, let
∑Z(X)#

A = {α ∈
QF (X) | A ∈ α}. Then the space QF (X), equipped with the topol-
ogy for which {QF (X)−∑Z(X)#

A | A ∈ Z(X)#} is a base, is a quasi-F
space. Define the map ΦX : QF (X) → X by ΦX(α) = ∩{A | A ∈ α}.
Then

(
QF (X), ΦX

)
is the minimal quasi-F cover of X and for any

A ∈ Z(X)#, ΦX

(∑Z(X)#

A

)
= A([4]).

Let X, Y be spaces and f : Y → X a map. For any U ⊆ X, let fU :
f−1(U) → U denote the restriction and co-restriction of f with respect
to f−1(U) and U , respectively. For any space X, let

(
QF (βX),Φβ

)
denote the minimal quasi-F cover of βX.

We recall that a covering map f : Y → X is called z# − irreducible
if f

(
Z(Y )#

)
= Z(X)#. Let f : Y → X be a covering map and Z a

zero-set in X. By Lemma 2.1, f
(
clY

(
intY

(
f−1(Z)

)))
= clX

(
intX(Z)

)
and clY

(
intY

(
f−1(Z)

)) ∈ Z(Y )#. Hence Z(X)# ⊆ f
(
Z(Y )#

)
and so

f : Y → X is z#-irreducible if and only if f
(
Z(Y )#

) ⊆ Z(X)#. Using
these we have the following :

Proposition 2.4. Let f : Y → X and g : W → Y be covering maps.
Then f ◦ g : W → X is z#-irreducible if and only if f : Y → X and
g : W → Y are z#-irreducible.

It is well-known that Φβ is z#-irreducible ([5]).
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3. Minimal quasi-F covers of kX

A z-filter F on a space X is called real if F is closed under the
countable intersection.

For any space X, let kX= vX∪{p ∈ βX−vX | there is a real z−filter
F on X such that ∩{clvX(F ) | F ∈ F} = ∅ and p ∈ ∩{clβX(F ) | F ∈
F}}. Then kX is an extension of a space X such that vX ⊆ kX ⊆ βX
([10]).

We recall that a space X is called a weakly Lindelöf space if for any
open cover U of X, there is a countable subfamily V of U such that
∪{V | V ∈ V} is a dense subset of X .

Lemma 3.1. ([10]) For any space X, kX is a weakly Lindelöf space.

It is well known that a space X is weakly Lindelöf if and only if for any
Z(X)#-filter A with the countable meet property, ∩{A | A ∈ A} 6= ∅.

Let X be a space. For any A ∈ Z(βX)#, let
∑Z(βX)#

A =
∑

A and∑
A ∩ QF (kX) = λA. Then for any A ∈ Z(βX)#, Φβ(

∑
A) = A, and

ΦkX(λA) = A ∩ kX, because QF (kX) = Φ−1
β (kX) and ΦkX = ΦβkX

([7]).

Theorem 3.2. Let X be a space. Then we have the following :

(1) QF (kX) is a weakly Lindelöf space, and
(2) ΦkX : QF (kX) → kX is a z#-irreducible map.

Proof. (1) Let A be a z-filter on QF (kX) with the countable meet
property and ∩{A | A ∈ A} = ∅. Suppose that ∩{ΦkX(A) | A ∈ A} 6= ∅.
Pick x ∈ ∩{ΦkX(A) | A ∈ A}. Since A is a z-filter on QF (kX), A
has the finite intersection property. Hence {A ∩ Φ−1

kX(x) | A ∈ A} is a
family of closed set in Φ−1

kX(x) with the finite intersection property. Since
Φ−1

kX(x) is a compact subset in QF (kX), ∩{A ∩ Φ−1
kX(x) | A ∈ A} 6= ∅

and so ∩{A | A ∈ A} 6= ∅. This is a contracdiction. Thus ∩{ΦkX(A) |
A ∈ A} = ∅. Since kX is a weakly Lindelöf space, there is a sequence
(An) in A such that clkX

( ∪ {kX − ΦkX(An) | n ∈ N}) =kX. Let
A ∈ A. Then ΦkX

(
QF (kX)−A

) ⊇ kX−ΦkX(A) and hence ΦkX(A′) ⊇
ΦkX

(
QF (kX)−A

) ⊇ kX−ΦkX(A). Thus clkX

(∪{ΦkX(A′n) | n ∈ N})
=kX. Note that

kX = clkX

( ∪ {ΦkX(A′n) | n ∈ N})

= clkX

(
ΦkX

( ∪ {A′n | n ∈ N}))

= ΦkX

(
clkX

( ∪ {A′n | n ∈ N}))

= ΦkX

( ∨ {A′n | n ∈ N}).
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Since ΦkX is a covering map, ∨{A′n | n ∈ N} = QF (kX) and so
(∨{A′n |

n ∈ N})′ = ∧{An | n ∈ N} = ∅. Since A has the countable meet
property, it is a contradiction. Hence ∩{A | A ∈ A} = ∅ and so QF (kX)
is a weakly Lindelöf space.

(2) Take any zero-set Z in QF (kX). Since QF (kX) is a weakly
Lindelöf space, QF (kX) − Z is an open weakly Lindelöf subspace of
QF (kX). Hence there is a sequence (Zn) in Z(βX)# such that for any
n ∈ N , QF (kX)− (

ΣZn ∩ QF (kX)
) ⊆ QF (kX)− Z and

clQF (kX)

( ∪ {QF (kX)− (
ΣZn ∩ QF (kX)

) | n ∈ N}) ∩ (
QF (kX)− Z

)

= clQF (kX)

( ∪ {QF (kX)− λZn | n ∈ N}) ∩ (
QF (kX)− Z

)

= QF (kX)− Z.

Hence ∨{λZ′n | n ∈ N} ⊇ QF (kX) − Z ⊇ ∪{λZ′n | n ∈ N}. Thus
∧{λZn | n ∈ N} = clQF (kX)

(
intQF (kX)(Z)

)
. Note that for any A ∈

Z(βX)#, ΦQF (kX)(λA) = A ∩ kX. By Lemma 2.1,

ΦQF (kX)

(
clQF (kX)

(
intQF (kX)(Z)

))

= ΦQF (kX)

( ∧ {λZn | n ∈ N})

= ∧{ΦQF (kX)(λZn) | n ∈ N}
= ∧{Zn ∩ kX | n ∈ N}.

and hence ΦQF (kX)

(
clQF (kX)

(
intQF (kX)(Z)

)) ∈ Z(kX)#. Thus ΦQF (kX)

is a z#-irreducible map.

Let X be a space. Then βQF (X) = QF (βX) if and only if ΦX is
z#-irreducible ([5]). Using this, we have the following :

Corollary 3.3. For any space, QF (βX) = βQF (kX).

Lemma 3.4. ([10]) For any continuous map f : X → Y , there is a
unique continuous map fk : kX → kY such that fk ◦ kX = kY ◦ f .

Let X be a space. Then there is a covering map h : βQF (X) →
QF (βX) such that Φβ ◦ h ◦ βQF (X) = βX ◦ΦX . By Lemma 3.4, there is
a continuous map Φk

X : kQF (X) → kX such that Φk
X◦kQF (X) = kX◦ΦX .

Since Φ−1
β (kX) = QF (kX), there is a continuous map tX : kQF (X) →

QF (kX) such that j◦tX = h◦βkQF (X) and ΦQF (kX)◦tX = Φk
X , where j :

QF (kX) → QF (βX) is a dense embedding. If tX is a homeomorphism,
then we write kQF (X) = QF (kX).

Corollary 3.5. Let X be a space. If kQF (X) = QF (kX), then
βQF (X) = QF (βX).
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Proof. Since tX : kQF (X) → QF (kX) is a homeomorphism and
ΦkX : QF (kX) → kX is z#-irreducible, Φk

X : kQF (X) → kX is z#-
irreducible. Take any zero-set Z in βQF (X). Then, by Lemma 2.1,
clβQF (X)

(
intβQF (X)(Z)

) ∩ kQF (X) ∈ Z(kQF (X))# and

Φk
X

(
clβQF (X)

(
intβQF (X)(Z)

) ∩ kΛX
)

= Φβ

(
h
(
clβQF (X)

(
intβQF (X)(Z)

))) ∩ kX ∈ Z(kX)#.

By Lemma 2.1, Φβ

(
h
(
clβQF (X)

(
intβQF (X)(Z)

))) ∈ Z(βX)# and so Φβ ◦
h is a z#-irreducible map. Proposition 2.4, h : βQF (X) → QF (βX) is
a z#-irreducible map. Since βQF (X) and QF (βX) are quasi-F spaces,
h is a homeomorphism.

Let X be a space such that βQF (X) = QF (βX). By Corollary
3.3, there is a homeomorphism mX : βQF (X) → βQF (kX) such that
βQF (kX) ◦ tX = mX ◦βkQF (X). Since mX ◦βkQF (X) is an embedding, tX
is an embedding.

A subspace X of a space Y is called C∗-embedded in Y if for any real-
valued continuous map f : X → R, there is a continuous map g : Y → R
such that g|X = f . For any space X, X is C∗-embedded in βX and if
X ⊇ Y ⊇ W ⊇ βX, then Y is C∗-embedded in W ([2]). Hence we have
the following

Corollary 3.6. Let X be a space such that βQF (X) = QF (βX).
Then kQF (X) is a C∗-embedded subspace of QF (kX).

Theorem 3.7. Let X be a space.Then the following are equivalent :

(1) kQF (X) = QF (kX),
(2) tX is an onto map and βQF (X) = QF (βX), and
(3) Φk

X is an onto map and βQF (X) = QF (βX).

Proof. (1) ⇒ (2) By Corollary 3.5, it is trivial.
(2) ⇒ (3) Since ΦX and tX are onto maps, Φk

X is an onto map.
(3) ⇒ (1) Let f = Φk

X . Take any x ∈ kX. Since f is an onto map
and ΦX is a covering map, f

(
kQF (X)−QF (X)

)
= kX −X([8]). Since

βkX ◦ f = Φβ ◦ h ◦ βkQF (X), f−1(x) = (Φβ ◦ h)−1(x) = φ−1
β (X) ⊆

kQF (X)−QF (X). Since Φβ ◦h is a covering map, f−1(x) is a compact
subset of kQF (X) and hence f is a compact map. By Corollary 3.6,
f−1(x) = Φ−1

β (x) ⊆ QF (kX).
Let F be a closed set in kQF (X) and x ∈ kX−f(F ). Then f−1(x)∩

F = ∅. Since f−1(x) is compact, there are A,B ∈ Z(βX)# such that
f−1(x) ⊆ ΣA, F ⊆ ΣB and A ∩ B = ∅. Since Φβ(ΣB) = B and
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Φ−1
β (x) ∩ ΣB = f−1(x) ∩ ΣB = ∅, x /∈ B. Since clkX(f(F )) ⊆ B,

x /∈ clkX(f(F )). Thus f is a closed map and so f is a perfect map.
Since mX ◦Φβ ◦βkQF (X) = βkX ◦Φk

X and mX ◦Φβ is a covering map,
Φk

X is a covering map. Since kQF (X) is a quasi-F space, there is a
covering map l : kQF (X) → QF (kX) such that ΦQF (kX)◦l = Φk

X . Since
QF (X) = Φ−1

β (X) and QF (kX) = Φ−1
β (kX), l ◦ kQF (X) = tX ◦ kQF (X).

Since kQF (X) is a dense embedding, l = tX is a homeomorphism.
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