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STABILITY OF MULTIPLICATIVE INVERSE

FUNCTIONAL EQUATIONS IN THREE VARIABLES

Eun Hwi Lee

Abstract. In this paper, we prove stabilities of multiplicative func-
tional equations in three variables such as
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1. Introduction

In 1940, Ulam [16] proposed the Ulam stability problem of additive
mappings;

Let G1 be a group and let G2 be a metric group with
a metric d(·, ·). Given ε > 0, does there exist a δ > 0
such that if a mapping h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all
x ∈ G1?

In 1941, Hyers [6] answered the Ulam’s question for the case of the
additive mapping on the Banach spaces.

Let G1 and G2 are Banach spaces. Assume that a map-
ping f : G1 → G2 satisfies the inequality

||f(x+ y)− f(x)− f(y)|| ≤ ε
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for all x, y ∈ G1. Then the limit g(x) := limn→∞
f(2nx)

2n

exists for all x ∈ G1 and g is the unique additive mapping
satisfying

||f(x)− g(x)|| ≤ ε
for all x ∈ G1.

In 1978, Th. M. Rassias [13] generalized the above result of an ap-
proximation involving a sum of norms;

Let G1 be a vector space and G2 a Banach space. Assume
that a mapping f : G1 → G2 satisfies

||f(x+ y)− f(x)− f(y)|| ≤ ε(||x||p + ||y||p)

for all x, y ∈ G1, ε > 0 and p < 1. Then the limit g(x) :=

limn→∞
f(2nx)

2n exists for all x ∈ G1 and g is the unique ad-
ditive mapping satisfying

||f(x)− g(x)|| ≤ 2ε

2− 2p
||x||p

for all x ∈ G1.
During the last two decades a number of papers and research mono-

graphs have been published on various generalizations and applications
of the generalized Hyers-Ulam stability to a number of functional equa-
tions and mappings (see [1]-[16]). P. Găvruta [4] provided a further
generalization of Th. M. Rassias’ Theorem.

In this paper, we investigate stabilities of another type functional
equations in three variables such as
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Since 1
x is a solution of these equations, these called multiplicative in-

verse functional equations in three variables. Also the solution of equa-
tion (1.1) and (1.2) are called multiplicative inverse mappings. Note
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that reciprocal difference functional equations
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and reciprocal adjoint functional equations in three variables
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are similar types with multiplicative functional equations in three vari-
ables. Stabilities of reciprocal difference functional equation and the
reciprocal adjoint functional equation in two variables was proved by K.
Ravi, J. M. Rassias and B. V. Senthil Kumar [15]. And Y. W. Lee and G.
H. Kim [14] extend these equations to m-variables. But we investigate
stabilities of another type functional equations in three variables.

2. Stabilities

Define for all x, y, z in R,
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Theorem 1. Let X and Y be spaces of non-zero real numbers. Assume
that f : X → Y satisfies the functional inequality

|Df (x, y, z)| ≤ φ(x, y, z)(2.1)

for all x, y, z ∈ X, where φ : X3 → Y is a function such that for all
x, y, z ∈ X

Φ(x, y, z) :=

∞∑
i=0

1

3i
φ
( x

3i+1
,
y

3i+1
,
z

3i+1

)
<∞.
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Then there exists a unique multiplicative inverse mapping A : X → Y
which satisfies (1.1) and

|f(x)−A(x)| ≤ Φ(x, x, x)

for all x ∈ X.

Proof. Replacing (x, y, z) by
(
x
3 ,

x
3 ,

x
3

)
in (2.1), we obtain∣∣∣∣13f (x3)− f (x)

∣∣∣∣ ≤ φ(x3 , x3 , x3) .(2.2)

Again replacing x by x
3 in (2.2) and dividing by 3 we get∣∣∣∣ 1
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Again replacing x by x
3 in the above inequality and dividing by 3 we get∣∣∣∣ 1
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Proceeding further and using induction on a positive integer n, we get∣∣∣∣ 1
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for all x ∈ X. In order to prove the convergence of the sequence{
1
3n f

(
x
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, replace x by x

3p in (2.3) and divide by 3p , we find that
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Allow p → ∞, the right-hand side of the above inequality tends to 0.
Thus the sequence

{
1
3n f

(
x
3n

)}
is a Cauchy sequence. Thus we may
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define a mapping A : X → Y by

A(x) := lim
n→∞
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for all (x, y, z) ∈ X3, where u = x+y
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n→∞, we have
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for all (x, y, z) ∈ X3, where u = x+y
2 , v = y+z

2 and w = z+x
2 . Now let

B : X → Y be another function which satisfies the equation (1.1) and
|f(x) − B(x)| ≤ Φ(x, x, x) for all x ∈ X. Since 3nB(x) = B( x

3n ) and
3nA(x) = A( x

3n ), we have

|B(x)−A(x)| = 1

3n

∣∣∣B(
x

3n
)−A(

x

3n
)
∣∣∣

≤ 1

3n

(∣∣∣B(
x

3n
)− f(

x

3n
)
∣∣∣+
∣∣∣f(

x

3n
)−A(

x

3n
)
∣∣∣)

≤ 2
∞∑
i=0

1

3n+i
φ
( x

3n+i+1
,

x

3n+i+1
,

x

3n+i+1

)
for all x ∈ X. Allowing n→∞ in the above inequality, we find that A
is unique. This completes the proof of the theorem.

Corollary 2. Let X and Y be spaces of non-zero real numbers.
Assume that f : X → Y satisfies the functional inequality

|Df (x, y, z)| ≤ δ
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for all x, y, z ∈ X. Then there exists a unique multiplicative inverse
mapping A : X → Y which satisfies (1.1) and

|f(x)−A(x)| ≤ 3δ

for all x ∈ X.

Proof. Let φ(x, y, z) = δ for all x, y, z ∈ X. Then by Theorem 1,

Φ(x) =
∞∑
i=0

δ

3i
= 3

for all x ∈ X. This completes the proof of the corollary.

Theorem 3. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X → Y satisfies the functional inequality

|Df (x, y, z)| ≤ ψ(x, y, z)(2.4)

for all x, y, z ∈ X, where ψ : X3 → Y is a function such that for all
x, y, z ∈ X

Ψ(x, y, z) :=

∞∑
i=0

3i+1ψ
(
3ix, 3iy, 3iz

)
<∞.

Then there exists a unique multiplicative inverse mapping A : X → Y
which satisfies (1.1) and

|f(x)−A(x)| ≤ Ψ(x, x, x)

for all x ∈ X.

Proof. Replacing (x, y, z) by (x, x, x) in (2.4) and multiplying by 3,
we obtain

|f (x)− 3f (3x)| ≤ 3ψ (x, x, x) .(2.5)

Again replacing x by 3x in (2.5) and multiplying by 3 we get∣∣f (x)− 32f
(
32x
)∣∣ ≤ 3ψ (x, x, x) + 32φ (3x, 3x, 3x) .

Again replacing x by 3x in the above inequality and multiplying by 3
we get ∣∣f (x)− 33f
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33x
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Proceeding further and using induction on a positive integer n, we get
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for all x ∈ X. In order to prove the convergence of the sequence
{3nf (3nx)}, replace x by 3px in (2.6) and divide by 3p , we find that
for n > p > 0∣∣3pf(3px)− 3n+pf(3n+px)
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Allow p → ∞, the right-hand side of the above inequality tends to 0.
Thus the sequence {3nf (3nx)} is a Cauchy sequence. Thus we may
define a mapping A : X → Y by

A(x) := lim
n→∞

3nf (3nx)

for all x ∈ X. By (2.6) with n→∞, we have

|f(x)−A(x)| ≤ Ψ(x, x, x)

for all x ∈ X. Replacing (x, y, z) by (3nx, 3ny, 3nz) in (2.4) and multi-
plying by 3n we obtain
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for all (x, y, z) ∈ X3. Now let B : X → Y be another function which
satisfies the equation (1.1) and |f(x)−B(x)| ≤ Ψ(x, x, x) for all x ∈ X.
Since B(3nx) = 1

3nB(x) and A(3nx) = 1
3nA(x) we have

|B(x)−A(x)| = 3n |B(3nx)−A(3nx)|
≤ 3n (|B(3nx)− f(3nx)|+ |f(3nx)−A(3nx)|)

≤ 2
∞∑
i=0

3n+i+1ψ
(
3n+ix, 3n+ix, 3n+ix

)
for all x ∈ X. Allowing n→∞ in the above inequality, we find that A
is unique. This completes the proof of the theorem.

Theorem 4. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X → Y satisfies the functional inequality

|Ef (x, y, z)| ≤ φ(x, y, z)(2.7)

for all x, y, z ∈ X, where φ : X3 → Y is a function such that for all
x, y, z ∈ X

Φ(x, y, z) :=
∞∑
i=0

1

3i
φ
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,
y

3i+1
,
z
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Then there exists a unique multiplicative inverse mapping A : X → Y
which satisfies (1.2) and

|f(x)−A(x)| ≤ Φ(x, x, x)

for all x ∈ X.

Proof. Replacing (x, y, z) by
(
x
3 ,

x
3 ,

x
3

)
in (2.7), we obtain∣∣∣∣13f (x3)− f (x)

∣∣∣∣ ≤ φ(x3 , x3 , x3) .
By the same method of proof in Theorem 1,we complete the proof.

Corollary 5. Let X and Y be spaces of non-zero real numbers.
Assume that f : X → Y satisfies the functional inequality

|Ef (x, y, z)| ≤ δ

for all x, y, z ∈ X. Then there exists a unique multiplicative inverse
mapping A : X → Y which satisfies (1.2) and the inequality

|f(x)−A(x)| ≤ 3δ
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for all x ∈ X.

Theorem 6. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X → Y satisfies the functional inequality

|Ef (x, y, z)| ≤ ψ(x, y, z)(2.8)

for all x, y, z ∈ X, where ψ : X3 → Y is a function such that for all
x, y, z ∈ X

Ψ(x, y, z) :=
∞∑
i=0

3i+1ψ
(
3ix, 3iy, 3iz

)
<∞.

Then there exists a unique multipicative inverse mapping A : X → Y
which satisfies (1.2) and the inequality

|f(x)−A(x)| ≤ Ψ(x, x, x)

for all x ∈ X.

Proof. Replacing (x, y, z) by (x, x, x) in (2.8) and multiplying by 3,
we obtain

|f (x)− 3f (3x)| ≤ 3ψ (x, x, x) .

By the same method of proof in Theorem 3, we complete the proof.
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