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STABILITY OF MULTIPLICATIVE INVERSE
FUNCTIONAL EQUATIONS IN THREE VARIABLES

EuN Hwi LEE

Abstract. In this paper, we prove stabilities of multiplicative func-
tional equations in three variables such as

T(%) —r(z+y+2)
. S )
r(Er () + () CR) + (G ()

and
T(M)+ rves)

1. Introduction

In 1940, Ulam [16] proposed the Ulam stability problem of additive
mappings;
Let Gy be a group and let Gy be a metric group with
a metric d(-,-). Given € > 0, does there exist a 6 > 0
such that if a mapping h : G1 — Go satisfies the inequality
d(h(zy), h(x)h(y)) < 6 for all x, y € G1, then there exists a
homomorphism H : G1 — Go with d(h(x), H(z)) < € for all
reG?
In 1941, Hyers [6] answered the Ulam’s question for the case of the
additive mapping on the Banach spaces.
Let G1 and G4 are Banach spaces. Assume that a map-
ping f : G1 — Go satisfies the inequality

1f (@ +y) = fl@) = fWll < e
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for all z,y € Gi. Then the limit g(x) = limy, 0 f(g:x)
exists for all x € Gy and g is the unique additive mapping

satisfying

1f(z) —g(@)|| <€
for all x € Gy.
In 1978, Th. M. Rassias [13] generalized the above result of an ap-
proximation involving a sum of norms;
Let Gy be a vector space and Go a Banach space. Assume
that a mapping f : G1 — Ga satisfies

f(z +y) = f(x) = )l < e(l][” + lly]I)

for all z,y € G1, € > 0 and p < 1. Then the limit g(z) :=
(2"z)

lim,, 00 fT exists for all x € G1 and g is the unique ad-
ditive mapping satisfying

1f (@) - g(@)]| < =

2—2p

1E<1

for all x € G;.

During the last two decades a number of papers and research mono-
graphs have been published on various generalizations and applications
of the generalized Hyers-Ulam stability to a number of functional equa-
tions and mappings (see [1]-[16]). P. Gavruta [4] provided a further
generalization of Th. M. Rassias’ Theorem.

In this paper, we investigate stabilities of another type functional
equations in three variables such as

rT+y+=z
r (g) —r(z+y+2)
1.1)
( 2 (55 ()
P )+ r (G + 1 (O ()
and
rT+y+=z
< g > +r(x+y+2)
1.2
e r(E) () (55)
() () (F5E) + (B )r(FHY)
Since i is a solution of these equations, these called multiplicative in-

verse functional equations in three variables. Also the solution of equa-
tion (1.1) and (1.2) are called multiplicative inverse mappings. Note
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that reciprocal difference functional equations

phya\ o 20()r(y)r(2)
( 3 ) @y +2) = ) + (@) + 1)@

and reciprocal adjoint functional equations in three variables

. (:L‘+y—|—z Ar(z)r(y)r(z)
3 r(@)r(y) +r(y)r(z) +r(2)r(z)

are similar types with multiplicative functional equations in three vari-
ables. Stabilities of reciprocal difference functional equation and the
reciprocal adjoint functional equation in two variables was proved by K
Ravi, J. M. Rassias and B. V. Senthil Kumar [15]. AndY. W. Lee and G.
H. Kim [14] extend these equations to m-variables. But we investigate
stabilities of another type functional equations in three variables.

)+r(m+y+z):

2. Stabilities

Define for all x,y, z in R,

Dr(xvyvz) =r (l‘_‘_g—i_’z) - T(

5 )r(55")

r(5h)r(t) +7“(y§Z) (5 )+7"(Z+$)7“(L§y)
Theorem 1. Let X and Y be spaces of non-zero real numbers. Assume
that f : X — 'Y satisfies the functional inequality

(2.1) 1Dy (@, y,2)] < ¢(x,y, 2)

for all z,y,z € X, where ¢ : X3 =Y is a function such that for all
z,y,z € X

1 T Y z
?gﬁ <31+1’ i+’ 32+1> < .

Mg

O(x,y,z2) =

@
Il
=)
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Then there exists a unique multiplicative inverse mapping A : X — Y
which satisfies (1.1) and

[f(z) = A(z)| < @(z, 2, 7)
forallz € X.

Proof. Replacing (z,y, z) by (%, T %) in (2.1), we obtain

|<e@35)

Again replacing = by £ in (2.2) and dividing by 3 we get
1 T T T T 1 r T x
—f( ) = < oz oz o= = ).
w1 () - 1@ <0(5.5.5)+ 30 (5 3 5n)
Again replacing x by % in the above inequality and dividing by 3 we get
2
1 x 1 T T z
373]0 (37) B f(x)‘ < Z§¢ <3i+1’ 3i+17 3i+1> :
i=0

Proceeding further and using induction on a positive integer n, we get

n—1
O EICENS

]

(22 3 () -1

(2.3)

IN

1 T T T
§¢ (3i+1’ 3i+1’ 3i+1)
0

for all + € X. In order to prove the convergence of the sequence
{%nf (3%)}, replace x by 55 in (2.3) and divide by 37 , we find that
form>p>0

!
ED

o0
1 T T T
< Z 3p+i ¢ (3p+i+1’ 3p+i+1’ 3p+z’+1>
=0

oo
1 T x T
<2 3¢ <3i+1’ i+’ 3i+1> '
i=p

Allow p — o0, the right-hand side of the above inequality tends to O.
Thus the sequence {3% f (3%)} is a Cauchy sequence. Thus we may

1 T 1 T
/) = s o)

T T

1
)= 5 )

i
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define a mapping A: X — Y by

for all x € X. By (2.3) with n — oo, we have

[f(x) = A(2)| < @(, 2, 2)

for all z € X. Replacing (z,y,2) by (3%, 4 5=) in (2.1) and dividing
by 3" we obtain

+ /(
( 3n)

for all (x,y,2) € X3, where u = L;y,v = %j and w = Z"'T’“" Letting
n — 00, we have

r+y+z) . = 2A(u)A(v)A(w)
A( 3 ) AW +y+2) = 050 + A(o) A(w) £ A(w) A(a)

for all (x,y,2) € X3, where u = x—;y,v = y—;z and w = z—;x Now let
B : X — Y be another function which satisfies the equation (1.1) and
|f(x) — B(z)| < ®(x,z,7) for all z € X. Since 3"B(z) = B(5) and
3"A(z) = A(5%), we have

2
1B(@) ~ A@)| = 5 B - AG)
< Si (\B%) ~ 1G]+ - )]

X X
= 2 Z 3n+2 (3n+z+1 ’ 3n+z+1 ) 3n+1+1)

for all z € X. Allowing n — oo in the above inequality, we find that A
is unique. This completes the proof of the theorem. O

Corollary 2. Let X and Y be spaces of non-zero real numbers.
Assume that f : X — Y satisfies the functional inequality

[Dy(w,y,2)] <6
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for all z,y,z € X. Then there exists a unique multiplicative inverse
mapping A : X — Y which satisfies (1.1) and
|[f(z) — A(z)| < 30
for all z € X.

Proof. Let ¢(x,y,z) = ¢ for all z,y,z € X. Then by Theorem 1,
S}
O(x) = 5 =3
i=0
for all x € X. This completes the proof of the corollary. O

Theorem 3. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X — 'Y satisfies the functional inequality

(2.4) 1Dy (@, y,2)] < ¥(2,y,2)

for all x,y,z € X, where ¢ : X® = Y is a function such that for all
z,y,z€X

U(z,y,z2):= ZBin (3ix,3iy,3iz) < 0.
i=0
Then there exists a unique multiplicative inverse mapping A : X — Y
which satisfies (1.1) and
[f(z) — Az)] < V(z,z,2)
forallx € X.

Proof. Replacing (z,y,z) by (z,z,z) in (2.4) and multiplying by 3,
we obtain

(2.5) |f (x) = 3f Bz)| < 3¢ (z,2,2).
Again replacing x by 3z in (2.5) and multiplying by 3 we get
|f (z) — 3%f (3%2)| < 3¢ (z,2,2) + 3°¢ (32,32, 32) .
Again replacing x by 3x in the above inequality and multiplying by 3

we get
2

|f (2) = 3% f (B32)| <> 37y (32, 372, 37) .

1=0
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Proceeding further and using induction on a positive integer n, we get

n—1
If (x) = 3"f (3"2)| < ) 371y (3, 3, ')
(2.6) .
<> 3ty (37, 3, ')
for all x € X. In order to prove the convergence of the sequence

{3"f (3"x)}, replace x by 3Pz in (2.6) and divide by 3? , we find that
forn>p>0

|37 f(3%x) — 3" f(37Px)| = 3P| f(3Pw) — 3" F(3"HPx)|

S i 3p+’i+1¢ (3p+i$7 ?)]J-i-il,7 3p+ix)
=0

< 374 (3w, 372, 3'z) .

Allow p — oo, the right-hand side of the above inequality tends to 0.
Thus the sequence {3"f (3"x)} is a Cauchy sequence. Thus we may
define a mapping A: X — Y by

A(z) := lim 3"f (3"x)
n—oo
for all z € X. By (2.6) with n — oo, we have

|f(x) — Az)| < W(z, 2, )

for all z € X. Replacing (z,y, z) by (3"x,3"y,3"z) in (2.4) and multi-
plying by 3™ we obtain
Sn

(D) - s

2f(3"x) f(3"y) f(3"2)
f@ra) f(3ry) + fFBy) f(3"2) + f(3"2) f(3"x)

< =33, 3"y, 372)

1

w

for all (z,y,2) € X°. Since ¥(z,y, z) converses, letting n — oo, we have

r+y+z B 2A(x)A(y)A(z)
( ) (Y +2) = A0 A0) + A AQz) + AR AR)
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for all (x,,2) € X3. Now let B : X — Y be another function which
satisfies the equation (1.1) and |f(z) — B(z)| < ¥(z,z,z) for all z € X.
Since B(3"z) = - B(z) and A(3"z) = 3 A(z) we have
|B(x) — Az)| = 3" |B(3"z) — A(3")|
<3"(IBB"z) = f(3"x) + [f(3"x) — A(3"z)])

oo

i=0
for all z € X. Allowing n — oo in the above inequality, we find that A
is unique. This completes the proof of the theorem. O

Theorem 4. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X =Y satisfies the functional inequality

for all z,y,z € X, where ¢ : X> =Y s a function such that for all
z,y,z € X

[e'¢)
1 T Y z
=0

Then there exists a unique multiplicative inverse mapping A : X — Y
which satisfies (1.2) and

f(z) — A(z)| < @(z, 2, 7)
forallz e X.

Proof. Replacing (x,y,z) by (%, 5 %) in (2.7), we obtain

1 /x T T T
~f(2) = <o(=,2,2).
’3f(3) /(@) —¢<3’3’3>
By the same method of proof in Theorem 1,we complete the proof. [

Corollary 5. Let X and Y be spaces of non-zero real numbers.
Assume that f: X — Y satisfies the functional inequality

|Ef(z,y,2)| <0

for all x,y,z € X. Then there exists a unique multiplicative inverse
mapping A : X — 'Y which satisfies (1.2) and the inequality

|f(z) = Az)] < 35
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forallx € X.

Theorem 6. Let X and Y be spaces of non-zero real numbers. As-
sume that f : X — 'Y satisfies the functional inequality

(2.8) [Ef(z,y,2)] < (a9, 2)

for all z,y,z € X, where v : X3 = Y is a function such that for all
z,y,z € X
o0
U(z,y,z):= Z3i+1¢ (3ix,3iy,3iz) < 0.
i=0
Then there exists a unique multipicative inverse mapping A : X = Y
which satisfies (1.2) and the inequality

forallx € X.

Proof. Replacing (z,y,z) by (x,z,x) in (2.8) and multiplying by 3,
we obtain

|f(z) = 3f Bz)| < 3¢ (z,z,2).
By the same method of proof in Theorem 3, we complete the proof. [
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