• Title/Summary/Keyword: Word Input

Search Result 227, Processing Time 0.026 seconds

Addressing Low-Resource Problems in Statistical Machine Translation of Manual Signals in Sign Language (말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결)

  • Park, Hancheol;Kim, Jung-Ho;Park, Jong C.
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.163-170
    • /
    • 2017
  • Despite the rise of studies in spoken to sign language translation, low-resource problems of sign language corpus have been rarely addressed. As a first step towards translating from spoken to sign language, we addressed the problems arising from resource scarcity when translating spoken language to manual signals translation using statistical machine translation techniques. More specifically, we proposed three preprocessing methods: 1) paraphrase generation, which increases the size of the corpora, 2) lemmatization, which increases the frequency of each word in the corpora and the translatability of new input words in spoken language, and 3) elimination of function words that are not glossed into manual signals, which match the corresponding constituents of the bilingual sentence pairs. In our experiments, we used different types of English-American sign language parallel corpora. The experimental results showed that the system with each method and the combination of the methods improved the quality of manual signals translation, regardless of the type of the corpora.

An Experimental Study on Automatic Summarization of Multiple News Articles (복수의 신문기사 자동요약에 관한 실험적 연구)

  • Kim, Yong-Kwang;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.1 s.59
    • /
    • pp.83-98
    • /
    • 2006
  • This study proposes a template-based method of automatic summarization of multiple news articles using the semantic categories of sentences. First, the semantic categories for core information to be included in a summary are identified from training set of documents and their summaries. Then, cue words for each slot of the template are selected for later classification of news sentences into relevant slots. When a news article is input, its event/accident category is identified, and key sentences are extracted from the news article and filled in the relevant slots. The template filled with simple sentences rather than original long sentences is used to generate a summary for an event/accident. In the user evaluation of the generated summaries, the results showed the 54.l% recall ratio and the 58.l% precision ratio in essential information extraction and 11.6% redundancy ratio.

A Study on the Pitch Contour Generator with Neural Network in the Isolated Words (신경망을 이용한 고립단어에서의 피치변화곡선 발생기에 관한 연구)

  • Lim Unchun;Kwak Jingu;Chang Sokwang
    • Proceedings of the KSPS conference
    • /
    • 1996.02a
    • /
    • pp.137-155
    • /
    • 1996
  • The purpose of this paper is to generate a pitch contour which is affected by tile phonetic environment and the number of syllables in each Korean isolated word using a neural network. To do this, we analyzed a set of 513 Korean isolated words, consisting of 1-4 syllables and extracted the pitch contour and the duration of each phoneme in all the words. The total number of phonemes we analyzed is about 3800. After that we approximated the pitch contour with a 1st order polynominal by a regression analysis. We could get the slope, the initial pitch and the duration of each phoneme. We used these 3 parameters as the target pattern of the neural network and let the neural network learn the rule of the variation of the pitch and duration, which was affected by the phonetic environment of each phoneme. We used 7 consecutive phoneme strings as an input pattern for a neural network to make the network learn the effect of phonetic environment around the center phoneme. In the learning phase, we used 3545 items(463 words) as target patterns which contained the phonetic environment of front and rear 3 phonemes and the neural network showed the correctness rate of 98.43%, 98.59%, 97.7% in the estimation of the duration, the slope, the initial pitch. In the recall phase, we tested the performance of tile neural network with 251 items(50 words) which weren't need as learning data and we could get the good correctness rate of 97.34%, 95.45%, 96.3% in the generation of the duration, the slope, and the initial pitch of each phoneme.

  • PDF

Design and Implementation of Simple Text-to-Speech System using Phoneme Units (음소단위를 이용한 소규모 문자-음성 변환 시스템의 설계 및 구현)

  • Park, Ae-Hee;Yang, Jin-Woo;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.49-60
    • /
    • 1995
  • This paper is a study on the design and implementation of the Korean Text-to-Speech system which is used for a small and simple system. In this paper, a parameter synthesis method is chosen for speech syntheiss method, we use PARCOR(PARtial autoCORrelation) coefficient which is one of the LPC analysis. And we use phoneme for synthesis unit which is the basic unit for speech synthesis. We use PARCOR, pitch, amplitude as synthesis parameter of voice, we use residual signal, PARCOR coefficients as synthesis parameter of unvoice. In this paper, we could obtain the 60% intelligibility by using the residual signal as excitation signal of unvoiced sound. The result of synthesis experiment, synthesis of a word unit is available. The controlling of phoneme duration is necessary for synthesizing of a sentence unit. For setting up the synthesis system, PC 486, a 70[Hz]-4.5[KHz] band pass filter for speech input/output, amplifier, and TMS320C30 DSP board was used.

  • PDF

Development of an Operating Manual on the Voluntary Activity to the Library Services with Disabled People in the Public Libraries (공공도서관 장애인서비스 자원봉사자 활동매뉴얼 개발 연구)

  • Ahn, In-Ja;Park, Mi-Young;Kim, Hye-Joo;Lee, Myeong-Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.21 no.1
    • /
    • pp.131-148
    • /
    • 2010
  • This study aimed to develop an operating manual on the voluntary activity to the library services with disabled people in the public libraries. Various domestic and overseas manuals on the voluntary activity to the library services with disabled people were analyzed. From the survey and expert interviews, five types of most frequently asked library services with disabled people, face-to-face reading, word input services, services to off-library users, mobility aids services and assistance of engineering devices were extraced. Five specific areas on the voluntary activity were chosen in terms of activity area, barrier type, specific activity field, activity purpose and checklist. Finally, contents of the operating manual was applied to the area of face-to-face reading.

Front Classification using Back Propagation Algorithm (오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구)

  • Jung Minchul
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.65-77
    • /
    • 2004
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.

  • PDF

Selective Attentive Learning for Fast Speaker Adaptation in Multilayer Perceptron (다층 퍼셉트론에서의 빠른 화자 적응을 위한 선택적 주의 학습)

  • 김인철;진성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.48-53
    • /
    • 2001
  • In this paper, selectively attentive learning method has been proposed to improve the learning speed of multilayer Perceptron based on the error backpropagation algorithm. Three attention criterions are introduced to effectively determine which set of input patterns is or which portion of network is attended to for effective learning. Such criterions are based on the mean square error function of the output layer and class-selective relevance of the hidden nodes. The acceleration of learning time is achieved by lowering the computational cost per iteration. Effectiveness of the proposed method is demonstrated in a speaker adaptation task of isolated word recognition system. The experimental results show that the proposed selective attention technique can reduce the learning time more than 60% in an average sense.

  • PDF

Combining Sentimental Expression-level and Sentence-level Classifiers to Improve Subjective Sentence Classification (감정 표현구 단위 분류기와 문장 단위 분류기의 결합을 통한 주관적 문장 분류의 성능 향상)

  • Kang, In-Ho
    • The KIPS Transactions:PartB
    • /
    • v.14B no.7
    • /
    • pp.559-566
    • /
    • 2007
  • Subjective sentences express opinions, emotions, evaluations and other subjective ideas relevant to products or events. These expressions sometimes can be seen in only part of a sentence, thus extracting features from a full-sentence can degrade the performance of subjective-sentence-classification. This paper presents a method for improving the performance of a subjectivity classifier by combining two classifiers generated from the different representations of an input sentence. One representation is a sentimental phrase that represents an automatically identified subjective expression or objective expression and the other representation is a full-sentence. Each representation is used to extract modified n-grams that are composed of a word and its contextual words' polarity information. The best performance, 79.7% accuracy, 2.5% improvement, was obtained when the phrase-level classifier and the sentence-level classifier were merged.

Optimized Design and Manufacture of Wideband Pulsed Gamma-ray Sensors (광대역 펄스감마선 탐지센서 최적화 설계 및 제작)

  • Jeong, Sang-hun;Lee, Nam-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.223-228
    • /
    • 2017
  • In this paper, we are proposing an optimal design of wideband pulsed type gamma-ray sensors. These sensors were manufactured based on the design results and after word electrical properties were analyzed. The sensor input parameters were derived on the basis of pulsed gamma-ray spectrum and time-dependent energy rate, and the output current which were derived on the basis of the sensor sensitivity control circuit. Pulsed gamma-ray sensors were designed using the TCAD simulators. The design results show that the optimal Epi layer thickness is 45um with the applied voltage 3.3V and the diameter is 2.0mm. The doping concentrations are as follows : N-type is an Arsenic as $1{\times}10^{19}/cm^3$, P-type is a Boron as $1{\times}10^{19}/cm^3$ and Epi layer is Phosphorus as $3.4{\times}10^{12}/cm^3$. The fabricated sensor was a leakage current, 12pA at voltage -3.3V and fully depleted mode at voltage -5V. A test result of pulsed radiation shows that the sensor gives out the optimal photocurrent.

Unsupervised Motion Learning for Abnormal Behavior Detection in Visual Surveillance (영상감시시스템에서 움직임의 비교사학습을 통한 비정상행동탐지)

  • Jeong, Ha-Wook;Chang, Hyung-Jin;Choi, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.45-51
    • /
    • 2011
  • In this paper, we propose an unsupervised learning method for modeling motion trajectory patterns effectively. In our approach, observations of an object on a trajectory are treated as words in a document for latent dirichlet allocation algorithm which is used for clustering words on the topic in natural language process. This allows clustering topics (e.g. go straight, turn left, turn right) effectively in complex scenes, such as crossroads. After this procedure, we learn patterns of word sequences in each cluster using Baum-Welch algorithm used to find the unknown parameters in a hidden markov model. Evaluation of abnormality can be done using forward algorithm by comparing learned sequence and input sequence. Results of experiments show that modeling of semantic region is robust against noise in various scene.