Front Classification using Back Propagation Algorithm

오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구

  • Jung Minchul (Department of Computer System Engineering, Sangmyung University)
  • 정민철 (상명대학교 공과대학 컴퓨터시스템공학과)
  • Published : 2004.11.01

Abstract

This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.

본 연구에서는 영문 단어로부터 폰트를 분류하기 위해 연역적이고 국부적인 폰트 분류 방법을 제안한다. 이는 문자 인식 전에 한 단어에서 폰트를 분류하는 것을 말한다. 폰트 분류를 위해 활자 특성인 어센더(ascender), 디센더(descender)와 세리프(serif)가 사용된다. 입력 단어로부터 어센더(ascender), 디센더(descender)와 세리프(serif)가 추출되어 경사도 특징 벡터가 추출되고, 그 특징 벡터는 인공 신경망에 의해 입력 단어에 대한 2가지 폰트 스타일, 3가지 폰트 그룹, 7가지 폰트 이름이 분류된다. 제안된 연역적이고 국부적인 폰트 분류 방법은 폰트 정보가 문자 분할기와 문자 인식기에 사용될 수 있게 한다. 나아가, 특정 폰트에 따른 Mono-Font 문자 분할기와 Mono-Font문자 인식기로 구성되는 OCR시스템을 구성할 수 있는 것을 가능하게 한다. 실험 결과는 평균 95.4 퍼센트의 높은 폰트 분류율을 보였다. 본 논문에서 7가지 폰트분류를 위해 제안된 방법은 그 외 다른 폰류 분류에도 적용될 수 있다.

Keywords