• Title/Summary/Keyword: Wideband Filter

Search Result 168, Processing Time 0.024 seconds

Wideband Multi-bit Continuous-Time $\Sigma\Delta$ Modulator with Adaptive Quantization Level (적응성 양자화 레벨을 가지는 광대역 다중-비트 연속시간 $\Sigma\Delta$ 모듈레이터)

  • Lee, Hee-Bum;Shin, Woo-Yeol;Lee, Hyun-Joong;Kim, Suh-Wan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.1-8
    • /
    • 2007
  • A wideband continuous-time sigma delta modulator for wireless application is implemented in 130nm CMOS. The SNR for small input signal is improved using a proposed adaptive quantizer which can effectively scale the quantization level. The modulator comprises a second-order loop filter for low power consumption, 4-bit quantizer and DAC for low jitter sensitivity and high linearity. Designed circuit achieves peak SNR of 51.36B with 10MHz signal Bandwidth and 320MHz sampling frequency dissipating 30mW.

A Study on Implementation and Performance Evaluation of Wideband Receiver for the INMARSAT-B Satellite Communications System (INMARSAT-B형 위성통신용 광대역 수신단 구현 및 성능평가에 관한 연구)

  • 전중성;임종근;김동일;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.166-172
    • /
    • 2001
  • A RF wideband receiver for INMARSAT-B satellite communications system was composed of low noise amplifier and high gain amplifier, The low noise amplifier used to the resistive decoupling circuit for input impedance matching and self-bias circuits for low noise. The high gain amplifier consists of matched amplifier type to improve receiver gain. The active bias circuit can be used to provide temperature stability without requiring the large voltage drop or relatively high-dissipated power needed with a bias stabilization resistor. The bandpass filter was used to reduce a spurious level. As a result, the characteristics of the receiver implemented here show more than 60 dB in gain and less than 1.8:1 in input and output voltage standing wave ratio(VSWR), especially the carrier to noise ratio which is input signal level -126.7 dB m at 1537.5 MHz is a 45.23 dB /Hz at a 1.02 kHz.

  • PDF

Analysis of W-CDMA System with Smart Antenna for Different Bandwidths in Wideband Multipath Channel (광대역 다중경로 채널에서 스마트 안테나를 적용한 W-CDMA 시스템의 대역폭에 따른 성능분석)

  • 전준수;이주석 ;김철성
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.2
    • /
    • pp.47-55
    • /
    • 2003
  • In this paper, the performance of DS-CDMA system with smart antenna is analyzed for different bandwidths (1.25MHz,5MHz) and different channel environments (rural, urban) in wideband multipath channel. For the analysis of smart antenna system, the vector channel having the spatio-temporal correlation is modeled as a time-variant linear filter in time, and each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. Several multipath is within one chip are distingushed into each one and the strongest signal is selected, DS-CDMA system with smart antenna using wider bandwidth present better performance than that using narrow bandwidth. It is shown that the smart antenna is more effective in urban area when using 2D-RAKE receiver.

A Study on Fabrication and Performance Evaluation of Wideband Receiver using Bias Stabilized Resistor for the Satellite Mobile Communications System (바이어스 안정화 저항을 이용한 이동위성 통신용 광대역 수신단 구현 및 성능 평가에 관한 연구)

  • 전중성;김동일;배정철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.569-577
    • /
    • 1999
  • A wideband RF receiver for satellite mobile communications system was fabricated and evaluated of performance in low noise amplifier and high gain amplifier. The low noise amplifier used to the resistive decoupling and self-bias circuits. The low noise amplifier is fabricated with both the RF circuits and the self-bias circuits. Using a INA-03184, the high gain amplifier consists of matched amplifier type. The active bias circuitry can be used to provide temperature stability without requiring the large voltage drop or relatively high-dissipated power needed with a bias stabilized resistor. The bandpass filter was used to reduce a spurious level. As a result, the characteristics of the receiver implemented here show more than 55 dB in gain, 50.83 dBc in a spurious level and less than 1.8 : 1 in input and output voltage standing wave ratio(VSWR), especially the carrier to noise ratio is a 43.15 dB/Hz at a 1 KHz from 1537.5 MHz.

  • PDF

Design of the Low-Power Continuous-Time Sigma-Delta Modulator for Wideband Applications (광대역 시스템을 위한 저전력 시그마-델타 변조기)

  • Kim, Kunmo;Park, Chang-Joon;Lee, Sanghun;Kim, Sangkil;Kim, Jusung
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.331-337
    • /
    • 2017
  • In this paper, we present the design of a 20MHz bandwidth 3rd-order continuous-time low-pass sigma-delta modulator with low-noise and low-power consumption. The bandwidth of the system is sufficient to accommodate LTE and other wireless network standards. The 3rd-order low-pass filter with feed-forward architecture achieves the low-power consumption as well as the low complexity. The system uses 3bit flash quantizer to provide fast data conversion. The current-steering DAC achieves low-power and improved sensitivity without additional circuitries. Cross-coupled transistors are adopted to reduce the current glitches. The proposed system achieves a peak SNDR of 65.9dB with 20MHz bandwidth and power consumption of 32.65mW. The in-band IM3 is simulated to be 69dBc with 600mVp-p two tone input tones. The circuit is designed in a 0.18-um CMOS technology and is driven by 500MHz sampling rate signal.

A study on characteristics of High Efficiency and Wideband Microstrip Band Pass Filter for Wireless Data Communication (무선데이터 통신을 위한 고효율 광대역 마이크로스트립 대역통과 필터 특성에 관한 연구)

  • Lee, Young-Hun;Song, Sung-Hae;Park, Won-Woo;Lee, Sang-Jae
    • Journal of IKEEE
    • /
    • v.12 no.4
    • /
    • pp.225-233
    • /
    • 2008
  • This paper presents a compact, low insertion loss, sharp rejection and wide band microstrip band pass filter that is composed rectangular loop resonator and step-impedance-open-stub(SIOS) for wireless data communication. The SIOS can be reduce length about 30% more than general 0.25${\lambda}$ stub. And stubs can have the advantage of tuning impedance magnitude. In order to demonstrate agrement of this paper prove, the optimized wide band pass filters are realized and experimented. A transmission line model used to calculate the frequency response of the new filters shows good agreement with measurements. The filter with perturbation stubs has four poles at rejection band, the poles are excited 3.610GHz, 4.265GHz at low frequency band, 8.494GHz, 9.056GHz at high frequency band. And the filter has 3dB fractional bandwidth of 57%(3.695GHz), an insertion loss of better than 0.37dB from 4.549GHz to 8.244GHz, and two rejection of greater than 30dB within 237MHz(4.312GHz${\sim}$ 4.549GHz) at low frequency band, 234MHz(8.244GHz-8.491GHz) at high frequency band.

  • PDF

Characteristics for High Efficiency and Wideband Band Pass Filter Using Rectangular Resonator and Step-Impedance-Open-Stubs (구형 공진기와 계단 임피던스 개방 스터브를 사용한 고효율 광대역 대역 통과 필터 특성)

  • Lee, Young-Hun;Kwon, Won-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.200-207
    • /
    • 2009
  • This paper presents a compact, low insertion loss, sharp rejection and wide band microstrip band pass filter that is composed rectangular loop resonator and Step-Impedance-Open-Stub(SIOS). The SIOS can be reduce length about 30 % more than general 0.25 $\lambda$ open stub. And the stub can the advantage of tuning impedance magnitude. In order to demonstrate agrement of this paper prove, the optimized wide band pass filters are realized and experimented. A transmission line model used to calculate the frequency response of the new filters shows good agreement with measurements. The filter has 3 dB fractional bandwidth of 51.75 %(3.206 GHz), an insertion loss of better than 0.44 dB from 4.587 GHz to 7.793 GHz, and two rejection of greater than 30 dB within 221 MHz($4.326{\sim}4.587\;GHz$) at low frequency band, 181 MHz($7.739{\sim}7.954\;GHz$) at high frequency band. Maximum rejection characteristics of the filter are -61.8 dB at low frequency and -76.3 dB at high frequency.

A Design of the UWB Bandpass Filter with a Good Performance of the Stopband, and Notched Band in Passband (우수한 차단 대역 특성과 통과 대역 내에 저지 대역을 갖는 UWB 대역 통과 필터 설계)

  • An, Jae-Min;Kim, Yu-Seon;Pyo, Hyun-Seong;Lee, Hye-Sun;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.28-35
    • /
    • 2010
  • In this paper, we designed and fabricated a ultra-wideband(UWB) bandpass filter with a good performance of a stopband, and a notched band in passband. The transformed equivalent circuit of the highpass filter was realized by distributed element. A wide-passband with 3-dB fractional bandwidth of more than 100 % was achieved by using optimum response of the HPF. For improving lower and upper stopband characteristic, a cross coupling between feed lines was employed, which was analyzed by desegmentation technique. In order to reject interference of Wireless LAN and Hyper LAN(5.15~5.825 GHz), the narrow notched(rejection) band was realized by a spurline. The fabricated BPF indicated the passband from 3.1 to 10.55 GHz and the flat group delay of less than 0.94 ns over the entire passband except the rejection band. The filter shown sharp attenuation both inside and outside the band and notched band from 5.2 to 6.12 GHz.

A Study on the Miniaturization of Microstrip Bandpass Filters by the Exact Synthesis (정밀합성법에 의한 마이크로스트립 대역통과 필터의 소형화에 관한 연구)

  • Choi, Hong-Ju;Kim, Kyung-Ho;Shin, Seong-Hyeon;Choe, Gwang-Je;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.442-451
    • /
    • 1997
  • We described a miniaturization of microstrip filters by the exact synthesis. With the exact synthesis, we can design completely new circuits physically realizable. The complex procedure for the network synthesis could be reduced by using computer software. It is a new design procedure ensuring the creation of optimum networks which have minimum number of elements. The exact synthesis gives more possibilities to make wideband filters which require bandwidth of 50~100 %. S-plane Bandpass prototypes are made with non-redundant filter synthesis technique that has transmission zero locations at required frequencies. Because this method uses the transmission lines which lengths are ${\lambda}$/4 at the stopband center frequency, we can reduce the size of the filter dramatically.

  • PDF

Measured Return Loss and Predicted Interference Level of PCB Integrated Filtering Antenna at Millimeter-Wave

  • Lee Jae-Wook;Kim Bong-Soo;Song Myung-Sun
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.140-145
    • /
    • 2005
  • In this paper, an experimental investigation for return loss and a software-based prediction for interference level of single-packaged filtering antenna composed of dielectric waveguide filter and PCB(Printed Circuit Board) slot antenna in transceiver module have been carried out with several different feeding structures in millimeter-wave regime. The implementation and embedding method of the existing air-filled waveguide filters working at millimeter-wave frequency on general PCB substrate have been described. In a view of the implementation of each components, the dielectric waveguide embedded in PCB and LTCC(Low Temparature Co-fired Ceramic) substrates has employed the via fences as a replacement with side walls and common ground plane to prevent energy leakage. The characteristics of several prototypes of filtering antenna embedded in PCB substrate are considered by comparing the wideband and transmission characteristics as a function of bent angle of transmission line connecting two components. In addition, as an essential to the packaging of transceiver module working at millimeter-wave, miniaturization technology maintaining the performances of independent components and the important problems caused by integrating and connecting the different components in different layers are described in this paper.