• Title/Summary/Keyword: Weyl theorem

검색결과 47건 처리시간 0.019초

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong
    • 대한수학회지
    • /
    • 제45권3호
    • /
    • pp.771-780
    • /
    • 2008
  • Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

PROPERTIES OF OPERATOR MATRICES

  • An, Il Ju;Ko, Eungil;Lee, Ji Eun
    • 대한수학회지
    • /
    • 제57권4호
    • /
    • pp.893-913
    • /
    • 2020
  • Let 𝓢 be the collection of the operator matrices $\(\array{A&C\\Z&B}\)$ where the range of C is closed. In this paper, we study the properties of operator matrices in the class 𝓢. We first explore various local spectral relations, that is, the property (β), decomposable, and the property (C) between the operator matrices in the class 𝓢 and their component operators. Moreover, we investigate Weyl and Browder type spectra of operator matrices in the class 𝓢, and as some applications, we provide the conditions for such operator matrices to satisfy a-Weyl's theorem and a-Browder's theorem, respectively.

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi;Braha, Naim Latif
    • 대한수학회지
    • /
    • 제51권5호
    • /
    • pp.1089-1104
    • /
    • 2014
  • An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

ON BROWDER'S THEOREM

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • 제10권1호
    • /
    • pp.11-17
    • /
    • 2002
  • In this paper we give several necessary and sufficient conditions for an operator on the Hilbert space to obey Browder's theorem. And it is shown that if S has totally finite ascent and $T{\prec}S$ then $f(T)$ obeys Browder's theorem for every $f{\in}H({\sigma}(T))$, where $H({\sigma}(T))$ denotes the set of all analytic functions on an open neighborhood of ${\sigma}(T)$.

  • PDF

ON SPECTRA OF 2-ISOMETRIC OPERATORS

  • Yang, Young-Oh;Kim, Cheoul-Jun
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제16권3호
    • /
    • pp.277-281
    • /
    • 2009
  • A Hilbert space operator T is a 2-isometry if $T^{{\ast}2}T^2\;-\;2T^{\ast}T+I$ = O. We shall study some properties of 2-isometries, in particular spectra of a non-unitary 2-isometry and give an example. Also we prove with alternate argument that the Weyl's theorem holds for 2-isometries.

  • PDF

WEAK NORMAL PROPERTIES OF PARTIAL ISOMETRIES

  • Liu, Ting;Men, Yanying;Zhu, Sen
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1489-1502
    • /
    • 2019
  • This paper describes when a partial isometry satisfies several weak normal properties. Topics treated include quasi-normality, subnormality, hyponormality, p-hyponormality (p > 0), w-hyponormality, paranormality, normaloidity, spectraloidity, the von Neumann property and Weyl's theorem.

STUDY ON BROWDER'S SPECTRUMS AND WEYL'S SPECTRUMS

  • Lee, Dong Hark
    • Korean Journal of Mathematics
    • /
    • 제12권2호
    • /
    • pp.147-154
    • /
    • 2004
  • In this paper we give several necessary and sufficient conditions for an operator on the Hilbert space H to obey Browder's theorem. And it is shown that if S has totally finite ascent and $T{\prec}S$ then $f(T)$ obeys Browder's theorem for every $f{\in}H({\sigma}(T))$, where $H({\sigma}(T))$ denotes the set of all analytic functions on an open neighborhood of ${\sigma}(T)$. Furthermore, it is shown that if $T{\in}B(H)$ is a compact operator or a Riesz Operator then T obeys Browder's theorem and Weyl's theorem holds if and only if Browder's holds.

  • PDF

WEYL@S THEOREMS FOR POSINORMAL OPERATORS

  • DUGGAL BHAGWATI PRASHAD;KUBRUSLY CARLOS
    • 대한수학회지
    • /
    • 제42권3호
    • /
    • pp.529-541
    • /
    • 2005
  • An operator T belonging to the algebra B(H) of bounded linear transformations on a Hilbert H into itself is said to be posinormal if there exists a positive operator $P{\in}B(H)$ such that $TT^*\;=\;T^*PT$. A posinormal operator T is said to be conditionally totally posinormal (resp., totally posinormal), shortened to $T{\in}CTP(resp.,\;T{\in}TP)$, if to each complex number, $\lambda$ there corresponds a positive operator $P_\lambda$ such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P_{\lambda}^{\frac{1}{2}}(T-{\lambda}I)|^{2}$ (resp., if there exists a positive operator P such that $|(T-{\lambda}I)^{\ast}|^{2}\;=\;|P^{\frac{1}{2}}(T-{\lambda}I)|^{2}\;for\;all\;\lambda)$. This paper proves Weyl's theorem type results for TP and CTP operators. If $A\;{\in}\;TP$, if $B^*\;{\in}\;CTP$ is isoloid and if $d_{AB}\;{\in}\;B(B(H))$ denotes either of the elementary operators $\delta_{AB}(X)\;=\;AX\;-\;XB\;and\;\Delta_{AB}(X)\;=\;AXB\;-\;X$, then it is proved that $d_{AB}$ satisfies Weyl's theorem and $d^{\ast}_{AB}\;satisfies\;\alpha-Weyl's$ theorem.

SPECTRA ORIGINATED FROM FREDHOLM THEORY AND BROWDER'S THEOREM

  • Amouch, Mohamed;Karmouni, Mohammed;Tajmouati, Abdelaziz
    • 대한수학회논문집
    • /
    • 제33권3호
    • /
    • pp.853-869
    • /
    • 2018
  • We give a new characterization of Browder's theorem through equality between the pseudo B-Weyl spectrum and the generalized Drazin spectrum. Also, we will give conditions under which pseudo B-Fredholm and pseudo B-Weyl spectrum introduced in [9] and [25] become stable under commuting Riesz perturbations.