DOI QR코드

DOI QR Code

WEYL'S THEOREM, TENSOR PRODUCT, FUGLEDE-PUTNAM THEOREM AND CONTINUITY SPECTRUM FOR k-QUASI CLASS An* OPERATO

  • Hoxha, Ilmi (Department of Mathematics and Computer Sciences University of Prishtina) ;
  • Braha, Naim Latif (Department of Mathematics and Computer Sciences University of Prishtina)
  • Received : 2014.03.07
  • Published : 2014.09.01

Abstract

An operator $T{\in}L(H)$, is said to belong to k-quasi class $A_n^*$ operator if $$T^{*k}({\mid}T^{n+1}{\mid}^{\frac{2}{n+1}}-{\mid}T^*{\mid}^2)T^k{\geq}O$$ for some positive integer n and some positive integer k. First, we will see some properties of this class of operators and prove Weyl's theorem for algebraically k-quasi class $A_n^*$. Second, we consider the tensor product for k-quasi class $A_n^*$, giving a necessary and sufficient condition for $T{\otimes}S$ to be a k-quasi class $A_n^*$, when T and S are both non-zero operators. Then, the existence of a nontrivial hyperinvariant subspace of k-quasi class $A_n^*$ operator will be shown, and it will also be shown that if X is a Hilbert-Schmidt operator, A and $(B^*)^{-1}$ are k-quasi class $A_n^*$ operators such that AX = XB, then $A^*X=XB^*$. Finally, we will prove the spectrum continuity of this class of operators.

Keywords

References

  1. P. Aiena, Semi-Fredholm Operators, Perturbations Theory and Localized SVEP, Merida, Venezuela, 2007.
  2. P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. https://doi.org/10.1007/s00020-009-1738-2
  3. A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315. https://doi.org/10.1007/BF01199886
  4. T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33 (1972), 169-178.
  5. S. C. Arora and J. K. Thukral, On a class of operators, Glas. Math. Ser. III21(41) (1986), no. 2, 381-386.
  6. S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 10 (1959), 175-182. https://doi.org/10.1090/S0002-9939-1959-0107826-9
  7. S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
  8. A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. https://doi.org/10.1090/S0002-9939-1966-0188786-5
  9. C. A. Mc Carthy, Cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613
  10. J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
  11. S. V. Djordjevic, Continuity of the essential spectrum in the class of quasihyponormal operators, Mat. Vesnik 50 (1998), no. 3-4, 71-74.
  12. S. V. Djordjevic and D. S. Djordjevic, Weyl's theorems, continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 259-269.
  13. B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954-962. https://doi.org/10.1016/j.laa.2011.06.002
  14. B. P. Duggal, I. H. Jeon, and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), no. 2, 584-587. https://doi.org/10.1016/j.jmaa.2010.04.068
  15. B. Fuglede, A Commutativity theorem for normal operator, Proc. Natl. Acad. Sci. USA 36 (1950), 35-40. https://doi.org/10.1073/pnas.36.1.35
  16. T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598. https://doi.org/10.3792/pja/1195521514
  17. T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (1981), no. 2, 240-242. https://doi.org/10.1090/S0002-9939-1981-0593465-4
  18. T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389-403.
  19. F. Gao and X. C. Fang, Generalized Weyl's theorem and spectral continuity for quasi-class (A, k) operators, Acta Sci. Math. (Szeged) 78 (2012), no. 1-2, 241-250.
  20. F. Gao and X. Li, Tensor products and the spectral continuity for k-quasi-*-class A Operators, Banach J. Math. Anal. 8 (2014), no. 1, 47-54. https://doi.org/10.15352/bjma/1381782086
  21. P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
  22. I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), no. 1, 151-157. https://doi.org/10.1007/s002090000128
  23. I. Hoxha and N. L. Braha, On k-quasi class $A^*_n$ operators, Bull. Math. Anal. Appl. 6 (2014), no. 1, 23-33.
  24. I. H. Kim, Weyl's theorem and tensor product for operators satisfying $T^{*k}|T^2|T^k\;{\geq}\;T^{*k}|T|^2T^k$, J. Korean Math. Soc. 47 (2010), no. 2, 351-361. https://doi.org/10.4134/JKMS.2010.47.2.351
  25. R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Society, 1992.
  26. K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, The Clarendon Press, Oxford University Press, New York, 2000.
  27. W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64. https://doi.org/10.1017/S0017089500031268
  28. S. Mecheri and A. Uchiyama, An extension of the Fuglede-Putnam's theorem to class A operators, Math. Inequal. Appl. 13 (2010), no. 1, 57-61.
  29. J. D. Newburgh, The variation of Spectra, Duke Math. J. 18 (1951), 165-176. https://doi.org/10.1215/S0012-7094-51-01813-3
  30. S. Panayappan, N. Jayanthi, and D. Sumathi, Weyl's theorem and tensor product for class $A_k$ operators, Pure Mathematical Sciences 1 (2012), no. 1, 13-23.
  31. S. Panayappan, N. Jayanthi, and D. Sumathi, Weyl's theorem and tensor product for quasi class $A_k$ operators, Pure Mathematical Sciences 1 (2012), no. 1, 33-41.
  32. C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362. https://doi.org/10.2307/2372180
  33. V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193-198. https://doi.org/10.1017/S0017089500006509
  34. M. H. M. Rashid and M. S. M. Noorani, On relaxation normality in the Fuglede-Putnam's theorem for a quasi-class A operators, Tamkang. J. Math. 40 (2009), no. 3, 307-312.
  35. M. Rosenblum, On the operator equation BX - XA = Q, Duke Math. J. 23 (1956), 263-269. https://doi.org/10.1215/S0012-7094-56-02324-9
  36. C. S. Ryoo and P. Y. Sik, $k^*$-paranormal operators, Pusan Kyongnam Math. J. 11 (1995), no. 2, 243-248.
  37. T. Saito, Hyponormal Operators and Related Topics, Lecture notes in Mathematics, 247, Springer-Verlag, 1971.
  38. S. Sanchez-Perales and V. A. Cruz-Barriguete, Continuity of approximate point spectrum on the algebra B(X), Commun. Korean Math. Soc. 28 (2013), no. 3, 487-500. https://doi.org/10.4134/CKMS.2013.28.3.487
  39. J. L. Shen, F. Zuo, and C. S. Yang, On operators satisfying $T^*|T^2|T{\geq}T^*|T^*|^2T$, Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2109-2116. https://doi.org/10.1007/s10114-010-9093-4
  40. J. Stochel, Seminormality of operators from their tensor products, Proc. Amer. Math. 124 (1996), no. 1, 435-440.
  41. A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasgow Math. J. 44 (2002), no. 3, 397-410. https://doi.org/10.1017/S0017089502030057
  42. J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integr. Equ. Oper. Theory 60 (2008), no. 2, 289-298. https://doi.org/10.1007/s00020-008-1556-y
  43. Q. Zeng and H. Zhong, On (n, k)-quasi-*-paranormal operators, arXiv 1209.5050v1 [math. FA], 2012.