References
- P. Aiena, Semi-Fredholm Operators, Perturbations Theory and Localized SVEP, Merida, Venezuela, 2007.
- P. Aiena, E. Aponte, and E. Bazan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), no. 1, 1-20. https://doi.org/10.1007/s00020-009-1738-2
- A. Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equations Operator Theory 13 (1990), no. 3, 307-315. https://doi.org/10.1007/BF01199886
- T. Ando, Operators with a norm condition, Acta Sci. Math. (Szeged), 33 (1972), 169-178.
- S. C. Arora and J. K. Thukral, On a class of operators, Glas. Math. Ser. III21(41) (1986), no. 2, 381-386.
- S. K. Berberian, Note on a theorem of Fuglede and Putnam, Proc. Amer. Math. Soc. 10 (1959), 175-182. https://doi.org/10.1090/S0002-9939-1959-0107826-9
- S. K. Berberian, Approximate proper vectors, Proc. Amer. Math. Soc. 13 (1962), 111-114. https://doi.org/10.1090/S0002-9939-1962-0133690-8
- A. Brown and C. Pearcy, Spectra of tensor products of operators, Proc. Amer. Math. Soc. 17 (1966), 162-166. https://doi.org/10.1090/S0002-9939-1966-0188786-5
- C. A. Mc Carthy, Cp, Israel J. Math. 5 (1967), 249-271. https://doi.org/10.1007/BF02771613
- J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
- S. V. Djordjevic, Continuity of the essential spectrum in the class of quasihyponormal operators, Mat. Vesnik 50 (1998), no. 3-4, 71-74.
- S. V. Djordjevic and D. S. Djordjevic, Weyl's theorems, continuity of the spectrum and quasihyponormal operators, Acta Sci. Math. (Szeged) 64 (1998), no. 1-2, 259-269.
- B. P. Duggal, I. H. Jeon, and I. H. Kim, On *-paranormal contractions and properties for *-class A operators, Linear Algebra Appl. 436 (2012), no. 5, 954-962. https://doi.org/10.1016/j.laa.2011.06.002
- B. P. Duggal, I. H. Jeon, and I. H. Kim, Continuity of the spectrum on a class of upper triangular operator matrices, J. Math. Anal. Appl. 370 (2010), no. 2, 584-587. https://doi.org/10.1016/j.jmaa.2010.04.068
- B. Fuglede, A Commutativity theorem for normal operator, Proc. Natl. Acad. Sci. USA 36 (1950), 35-40. https://doi.org/10.1073/pnas.36.1.35
- T. Furuta, On the class of paranormal operators, Proc. Japan Acad. 43 (1967), 594-598. https://doi.org/10.3792/pja/1195521514
- T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality, Proc. Amer. Math. Soc. 81 (1981), no. 2, 240-242. https://doi.org/10.1090/S0002-9939-1981-0593465-4
- T. Furuta, M. Ito, and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Sci. Math. 1 (1998), no. 3, 389-403.
- F. Gao and X. C. Fang, Generalized Weyl's theorem and spectral continuity for quasi-class (A, k) operators, Acta Sci. Math. (Szeged) 78 (2012), no. 1-2, 241-250.
- F. Gao and X. Li, Tensor products and the spectral continuity for k-quasi-*-class A Operators, Banach J. Math. Anal. 8 (2014), no. 1, 47-54. https://doi.org/10.15352/bjma/1381782086
- P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
- I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z. 235 (2000), no. 1, 151-157. https://doi.org/10.1007/s002090000128
-
I. Hoxha and N. L. Braha, On k-quasi class
$A^*_n$ operators, Bull. Math. Anal. Appl. 6 (2014), no. 1, 23-33. -
I. H. Kim, Weyl's theorem and tensor product for operators satisfying
$T^{*k}|T^2|T^k\;{\geq}\;T^{*k}|T|^2T^k$ , J. Korean Math. Soc. 47 (2010), no. 2, 351-361. https://doi.org/10.4134/JKMS.2010.47.2.351 - R. Lange and S. Wang, New Approaches in Spectral Decomposition, Contemp. Math. 128, Amer. Math. Society, 1992.
- K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, The Clarendon Press, Oxford University Press, New York, 2000.
- W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), no. 1, 61-64. https://doi.org/10.1017/S0017089500031268
- S. Mecheri and A. Uchiyama, An extension of the Fuglede-Putnam's theorem to class A operators, Math. Inequal. Appl. 13 (2010), no. 1, 57-61.
- J. D. Newburgh, The variation of Spectra, Duke Math. J. 18 (1951), 165-176. https://doi.org/10.1215/S0012-7094-51-01813-3
-
S. Panayappan, N. Jayanthi, and D. Sumathi, Weyl's theorem and tensor product for class
$A_k$ operators, Pure Mathematical Sciences 1 (2012), no. 1, 13-23. -
S. Panayappan, N. Jayanthi, and D. Sumathi, Weyl's theorem and tensor product for quasi class
$A_k$ operators, Pure Mathematical Sciences 1 (2012), no. 1, 33-41. - C. R. Putnam, On normal operators in Hilbert space, Amer. J. Math. 73 (1951), 357-362. https://doi.org/10.2307/2372180
- V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), no. 2, 193-198. https://doi.org/10.1017/S0017089500006509
- M. H. M. Rashid and M. S. M. Noorani, On relaxation normality in the Fuglede-Putnam's theorem for a quasi-class A operators, Tamkang. J. Math. 40 (2009), no. 3, 307-312.
- M. Rosenblum, On the operator equation BX - XA = Q, Duke Math. J. 23 (1956), 263-269. https://doi.org/10.1215/S0012-7094-56-02324-9
-
C. S. Ryoo and P. Y. Sik,
$k^*$ -paranormal operators, Pusan Kyongnam Math. J. 11 (1995), no. 2, 243-248. - T. Saito, Hyponormal Operators and Related Topics, Lecture notes in Mathematics, 247, Springer-Verlag, 1971.
- S. Sanchez-Perales and V. A. Cruz-Barriguete, Continuity of approximate point spectrum on the algebra B(X), Commun. Korean Math. Soc. 28 (2013), no. 3, 487-500. https://doi.org/10.4134/CKMS.2013.28.3.487
-
J. L. Shen, F. Zuo, and C. S. Yang, On operators satisfying
$T^*|T^2|T{\geq}T^*|T^*|^2T$ , Acta Math. Sin. (Engl. Ser.) 26 (2010), no. 11, 2109-2116. https://doi.org/10.1007/s10114-010-9093-4 - J. Stochel, Seminormality of operators from their tensor products, Proc. Amer. Math. 124 (1996), no. 1, 435-440.
- A. Uchiyama and K. Tanahashi, Fuglede-Putnam's theorem for p-hyponormal or log-hyponormal operators, Glasgow Math. J. 44 (2002), no. 3, 397-410. https://doi.org/10.1017/S0017089502030057
- J. Yuan and Z. Gao, Weyl spectrum of class A(n) and n-paranormal operators, Integr. Equ. Oper. Theory 60 (2008), no. 2, 289-298. https://doi.org/10.1007/s00020-008-1556-y
- Q. Zeng and H. Zhong, On (n, k)-quasi-*-paranormal operators, arXiv 1209.5050v1 [math. FA], 2012.