DOI QR코드

DOI QR Code

PACKING DIMENSIONS OF GENERALIZED RANDOM MORAN SETS

  • Tong, Xin (Department of Mathematics Wuhan University) ;
  • Yu, Yue-Li (Department of Mathematics Wuhan University) ;
  • Zhao, Xiao-Jun (School of Economics Peking University)
  • Received : 2014.02.27
  • Published : 2014.09.01

Abstract

We consider random fractal sets with random recursive constructions in which the contracting vectors have different distributions at different stages. We prove that the random fractal associated with such construction has a constant packing dimension almost surely and give an explicit formula to determine it.

Keywords

References

  1. M. Arbeiter, Random recursive construction of self-similar fractal measure. The non-compact case, Probab. Theory Related Fields 88 (1991), no. 4, 497-520. https://doi.org/10.1007/BF01192554
  2. M. Arbeiter and N. Patzschke, Random self-similar multifractals, Math. Nachr. 181 (1996), 5-42.
  3. K. J. Falconer, Random fractals, Math. Proc. Cambridge Philos. Soc. 100 (1986), no. 3, 559-582. https://doi.org/10.1017/S0305004100066299
  4. K. J. Falconer, Fractal Geometry. Mathematical Foundation and Applications, John Wily and Sons, Ltd., Chichester, 1990.
  5. K. J. Falconer, Techniques in Fractal Geometry, John Wiley and Sons, Ltd. Chichester, 1997.
  6. S. Graf, Statistically self-similar fractals, Probab. Theory Related Fields 74 (1987), no. 3, 357-392. https://doi.org/10.1007/BF00699096
  7. S. Graf, R. D. Mauldin, and S. C. Williams, The exact Hausdorff dimension in random recursive constructions, Mem. Amer. Math. Soc. 71 (1988), no. 381, x+121 pp.
  8. S. Hua, The dimensions of generalized self-similar sets, Acta Math. Appl. Sin. 17 (1994), no. 4, 551-558.
  9. S. Hua and W. X. Li, Packing dimension of generalized Moran sets, Prog. Nat. Sci. 6 (1996), no. 2, 148-152.
  10. S. Hua, H. Rao, Z. Y. Wen, and J. Wu, On the structures and dimensions of Moran sets, Sci. China Ser. A 43 (2000), no. 8, 836-852. https://doi.org/10.1007/BF02884183
  11. J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713-747. https://doi.org/10.1512/iumj.1981.30.30055
  12. J. E. Hutschinson and L. Ruschendorff, Random fractal measures via the contraction method, Indiana Univ. Math. J. 47 (1998), no. 2, 471-487.
  13. Y. Kifer, Fractals via Random Iterated Function Systems and Random Geometric Constructions, Fractal Geometry and Stochastics (Finsterbergen, 1994), pp. 145-164; Progr. Probab. 37 Birkhauser, Basel, 1995.
  14. Y. Kifer, Fractal dimensions and random transformations, Trans. Amer. Math. Soc. 348 (1996), no. 5, 2003-2038. https://doi.org/10.1090/S0002-9947-96-01608-X
  15. Y. Y. Liu, Z. Y. Wen, and J. Wu, Generalized random recursive constructions and geometric properties of random fractals, Math. Nachr. 267 (2004), 65-76. https://doi.org/10.1002/mana.200310153
  16. R. D. Mauldin and S. C. Williams, Random recursive constructions: asymptotic geometric and topological properties, Trans. Amer. Math. Soc. 295 (1986), no. 1, 325-346. https://doi.org/10.1090/S0002-9947-1986-0831202-5
  17. P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 12 (1946), 15-23.
  18. L. Olsen, Random geometrically graph directed self-similar multifractals, Pitman Research Notes in Mathematics Series, 307. Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1994.
  19. N. Patzschke and M. Zahle, Self-similar random measures are locally scale invariant, Probab. Theory Related Fields 97 (1993), no. 4, 559-574. https://doi.org/10.1007/BF01192964
  20. N. Patzschke and U. Zahle, Self-similar random measures IV. The recursive construction model of Falconer, Graf, and Mauldin and Williams, Math. Nachr. 149 (1990), 285-302. https://doi.org/10.1002/mana.19901490122
  21. Y. Pesin, Dimension Theory in Dynamical Systems, University of Chicago Press, Chicago, IL, 1997.
  22. Y. Pesin and H. Weiss, On the dimension of deterministic and random Cantor-like sets, symbolic dynamics, and the Eckmann-Ruelle conjecture, Comm. Math. Phys. 182 (1996), no. 1, 105-153. https://doi.org/10.1007/BF02506387