DOI QR코드

DOI QR Code

WEYL SPECTRUM OF THE PRODUCTS OF OPERATORS

  • Cao, Xiaohong (College of Mathematics and Information Science Shaanxi Normal University)
  • Published : 2008.05.31

Abstract

Let $M_C=\(\array{A&C\\0&B}\)$ be a $2{\times}2$ upper triangular operator matrix acting on the Hilbert space $H{\bigoplus}K\;and\;let\;{\sigma}_w(\cdot)$ denote the Weyl spectrum. We give the necessary and sufficient conditions for operators A and B which ${\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w\(\array{A&C\\0&B}\)\;or\;{\sigma}_w\(\array{A&C\\0&B}\)={\sigma}_w(A){\cup}{\sigma}_w(B)$ holds for every $C{\in}B(K,\;H)$. We also study the Weyl's theorem for operator matrices.

Keywords

References

  1. R. Bouldin, The product of operators with closed range, Tohoku Math. J. (2) 25 (1973), 359-363 https://doi.org/10.2748/tmj/1178241337
  2. X. H. Cao and B. Meng, Essential approximate point spectra and Weyl's theorem for operator matrices, J. Math. Anal. Appl. 304 (2005), no. 2, 759-771 https://doi.org/10.1016/j.jmaa.2004.09.053
  3. B. P. Duggal, In Ho Jeon, and In Hyoun Kim, On Weyl's theorem for quasi-class A operators, J. Korean Math. Soc. 43 (2006), no. 4, 899-909 https://doi.org/10.4134/JKMS.2006.43.4.899
  4. B. P. Duggal and C. Kubrusly, Weyl's theorems for posinormal operators, J. Korean Math. Soc. 42 (2005), no. 3, 529-541 https://doi.org/10.4134/JKMS.2005.42.3.529
  5. I. Gohberg, S. Gohberg, and M. A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, 49. Birkhauser Verlag, Basel, 1990
  6. S. Grabiner, Uniform ascent and descent of bounded operators, J. Math. Soc. Japan 34 (1982), no. 2, 317-337 https://doi.org/10.2969/jmsj/03420317
  7. R. Harte and W. Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349 (1997), no. 5, 2115-2124 https://doi.org/10.1090/S0002-9947-97-01881-3
  8. W. Y. Lee, Weyl's theorem for operator matrices, Integral Equations Operator Theory 32 (1998), no. 3, 319-331 https://doi.org/10.1007/BF01203773
  9. W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 (2001), no. 1, 131-138 https://doi.org/10.1090/S0002-9939-00-05846-9
  10. H. Weyl, Uber beschrankte quadratische Formen, deren Differenz vollsteig ist, Rend. Cire. Mat. Palermo 27 (1909), 373-392 https://doi.org/10.1007/BF03019655

Cited by

  1. WITHDRAWN: The stability of the single-valued extension property 2011, https://doi.org/10.1016/j.aml.2011.11.008
  2. A note on property ( $${W_E}$$ W E ) vol.152, pp.1, 2017, https://doi.org/10.1007/s10474-017-0707-5
  3. The stability of the single valued extension property vol.390, pp.1, 2012, https://doi.org/10.1016/j.jmaa.2012.01.047
  4. Property (ω) and topological uniform descent vol.9, pp.6, 2014, https://doi.org/10.1007/s11464-014-0373-7