• Title/Summary/Keyword: Weighted cost function

Search Result 54, Processing Time 0.02 seconds

Evolution of Human Locomotion: A Computer Simulation Study (인류 보행의 진화: 컴퓨터 시뮬레이션 연구)

  • 엄광문;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.5
    • /
    • pp.188-202
    • /
    • 2004
  • This research was designed to investigate biomechanical aspects of the evolution based on the hypothesis of dynamic cooperative interactions between the locomotion pattern and the body shape in the evolution of human bipedal walking The musculoskeletal model used in the computer simulation consisted of 12 rigid segments and 26 muscles. The nervous system was represented by 18 rhythmic pattern generators. The genetic algorithm was employed based on the natural selection theory to represent the evolutionary mechanism. Evolutionary strategy was assumed to minimize the cost function that is weighted sum of the energy consumption, the muscular fatigue and the load on the skeletal system. The simulation results showed that repeated manipulations of the genetic algorithm resulted in the change of body shape and locomotion pattern from those of chimpanzee to those of human. It was suggested that improving locomotive efficiency and the load on the musculoskeletal system are feasible factors driving the evolution of the human body shape and the bipedal locomotion pattern. The hypothetical evolution method employed in this study can be a new powerful tool for investigation of the evolution process.

A TUTORIAL ON LINEAR QUADRATIC OPTIMAL GUIDANCE FOR MISSILE APPLICATIONS

  • TAHK, MIN-JEA
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.19 no.3
    • /
    • pp.217-234
    • /
    • 2015
  • In this tutorial the theoretical background of LQ optimal guidance is reviewed, starting from calculus of variations. LQ optimal control is then introduced and applied to missile guidance to obtain the basic form of LQ optimal guidance laws. Extension of LQ optimal guidance methodology for handling weighted cost function, dynamic lag associated with the missile dynamics and the autopilot, constrained impact angle, and constrained impact time is also described with a brief discussion on the asymptotic properties of the optimal guidance laws. Furthermore, an introduction to polynomial guidance and generalized impactangle-control guidance, which are closed related with LQ optimal guidance, is provided to demonstrate the current status of missile guidance techniques.

Latent Keyphrase Extraction Using Deep Belief Networks

  • Jo, Taemin;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.153-158
    • /
    • 2015
  • Nowadays, automatic keyphrase extraction is considered to be an important task. Most of the previous studies focused only on selecting keyphrases within the body of input documents. These studies overlooked latent keyphrases that did not appear in documents. In addition, a small number of studies on latent keyphrase extraction methods had some structural limitations. Although latent keyphrases do not appear in documents, they can still undertake an important role in text mining because they link meaningful concepts or contents of documents and can be utilized in short articles such as social network service, which rarely have explicit keyphrases. In this paper, we propose a new approach that selects qualified latent keyphrases from input documents and overcomes some structural limitations by using deep belief networks in a supervised manner. The main idea of this approach is to capture the intrinsic representations of documents and extract eligible latent keyphrases by using them. Our experimental results showed that latent keyphrases were successfully extracted using our proposed method.

Compact electromagnetic vibration suppressor and energy harvester; an experimental study

  • Aref Afsharfard;Hooman Zoka;Kyung Chun Kim
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • In this study, an electromagnetic dynamic vibration suppressor and energy harvester is designed and studied. In this system, a gear mechanism is used to convert the linear motion to continuous rotary motion. Governing equations of motion for the system are derived and validated using the experimental results. Effects of changing the main parameters of the presented system, such as mass ratio, stiffness ratio and gear ratio on the electro-mechanical behavior of system are investigated. Moreover, using so-called Weighted Cost Function, the optimum parameters of the system are obtained. Finally, it is shown that the presented electromagnetic dynamic vibration absorber not only can reduce the undesired vibration of the main system but also it can harvest acceptable electrical energy.

Motion Planning for Mobile Robots Using a Spline Surface

  • Kato, Kiyotaka;Tanaka, Jyunichi;Tokunaga, Hironori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1054-1059
    • /
    • 2005
  • The artificial potential method uses a potential field to guide a robot from a start to a goal configuration respectively. The potential field consists of attractive potential used to pull a robot toward a goal and repulsive potential to keep it away from obstacles. However, there are two problems concerning local minimum and computational cost to be resolved in conventional artificial potential methods. This study proposes a method utilizing a spline surface that interpolates arbitrary boundaries and a domain reduction method that reduces the unnecessary area. The proposed spline surface interpolates arbitrary shaped boundaries and is used as an artificial potential to guide a robot for global motion planning of a mobile robot. A reduced domain process reduces the unnecessary domain. We apply a distance-weighted function as such a function, which blends distances from each boundary with a reduction in computational time compared with other analytical methods. As a result, this paper shows that an arbitrary boundary spline surface provides global planning and a domain reduction method reduces local minimum with quick operation.

  • PDF

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Weighted Census Transform and Guide Filtering based Depth Map Generation Method (가중치를 이용한 센서스 변환과 가이드 필터링 기반깊이지도 생성 방법)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Generally, image contains geometrical and radiometric errors. Census transform can solve the stereo mismatching problem caused by the radiometric distortion. Since the general census transform compares center of window pixel value with neighbor pixel value, it is hard to obtain an accurate matching result when the difference of pixel value is not large. To solve that problem, we propose a census transform method that applies different 4-step weight for each pixel value difference by applying an assistance window inside the window kernel. If the current pixel value is larger than the average of assistance window pixel value, a high weight value is given. Otherwise, a low weight value is assigned to perform a differential census transform. After generating an initial disparity map using a weighted census transform and input images, the gradient information is additionally used to model a cost function for generating a final disparity map. In order to find an optimal cost value, we use guided filtering. Since the filtering is performed using the input image and the disparity image, the object boundary region can be preserved. From the experimental results, we confirm that the performance of the proposed stereo matching method is improved compare to the conventional method.

Cognitive Shape Decomposition (인지적 형태 분할)

  • 김호성;박규호
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.317-346
    • /
    • 1989
  • A congnitive shape decomposition method that agrees with human intuition is proposed for the conceptual recognition from sillouettes of objects. Descriptions specifying the structure of shape in terms of meaningful parts and relations have cognitive power and anthropomorphism. In general, man-made objects have a lot of collinear lines and regularity. For the cognitive decomposition of man-made objects, many heuristic rules based on the cognitive experimentation are applied on the context of collinerarity and regularity. The cognitive shape decomposition for the natural shape is carried out by analyzing the possible configuraitions of vertices and line segments for one concave vertex. A cost function for the configuation is designed by weighted sum of five criteria such as, the length of split line segment, the number of split line segments at concave vertex, the proximity of concave vertex, and the correspondence of vertices. These criteria are vased on the property of human perception such as proximtiy, symmetry, and simplicity. The most promising vertex os selected among three set of visible vertices by evaluating the cost function. A number of experiments conducted on the different types of shapes shows that the results correspond with human intuition.

Multiple Supply Voltage Scheduling Techniques for Minimal Energy Consumption (에너지 소모 최소화를 위한 다중 전압 스케줄링 기법)

  • Jeong, Woo-Sung;Shin, Hyun-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.9
    • /
    • pp.49-57
    • /
    • 2009
  • In this paper, we propose a multiple voltage scheduling method which reduces energy consumption considering both timing constraints and resource constraints. In the other multiple voltage scheduling techniques, high voltage is assigned to operations in the longest path and low voltage is assigned to operations that are not on the longest path. However, in those methods, voltages are assigned to specific operations restrictively. We use a simulated annealing technique, in which several voltages are assigned to specific operations flexibly regardless of whether they are on the longest path. In this paper, a post processing algorithm is proposed to further reduce the energy consumption. In some cases, designers may want to reduce the level shifters. To make tradeoff between the total energy and the number (or energy) of level shifters weighted term can be added to the cost function. When the level shifter energy is weighted six times, for example, the number of level shifters is reduced by about 24% and their energy consumption is reduced by about 20%.

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.