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A Missile Guidance Law Based on Sontag’s Formula to Intercept
Maneuvering Targets

Chang-Kyung Ryoo, Yoon-Hwan Kim, Min-Jea Tahk, and Keeyoung Choi

Abstract: In this paper, we propose a nonlinear guidance law for missiles against maneuvering
targets. First, we derive the equations of motion described in the line-of-sight reference frame
and then we define the equilibrium subspace of the nonlinear system to guarantee target
interception within a finite time. Using Sontag’s formula, we derive a nonlinear guidance law
that always delivers the state to the equilibrium subspace. If the speed of the missile is greater
than that of the target, the proposed law has global capturability in that, under any initial launch
conditions, the missile can intercept the maneuvering target. The proposed law also minimizes
the integral cost of the control energy and the weighted square of the state. The performance of
the proposed law is compared with the augmented proportional navigation guidance law by
means of numerical simulations of various initial conditions and target maneuvers.

Keywords: Control Lyapunov function, missile guidance, nonlinear control, Sontag’s formula.

1. INTRODUCTION

Recently, optimal control theory [1,2] has been
widely used to derive new guidance laws [3-5].
Guidance laws based on modern control theory, such
as receding horizon control [6] and sliding-mode
control [7], have been occasionally found in the
literature. In these studies, approximations such as a
non-maneuvering target and linearized equations of
motion are commonly used to derive closed-form
solutions. Because these assumptions restrict the
application of the devised laws to the real guidance
loop represented by a highly nonlinear state-feedback
system, a capturability analysis for the entire
engagement scenario should be performed to specify
the capture region and requirements of the guidance
law parameters. In general, a capturability analysis is
done by extensive 6-DOF simulations or by
qualitatively inspecting the state behavior. However,
because these kinds of approaches provide sufficient
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conditions only, the entire capture region may not be
easily determined.

For decades there have been numerous studies on
the closed-form solutions and capturability of
proportional navigation (PN) laws and their variants
[8-14]. In Pure PN (PPN), it has been proved that the
missile always reaches a maneuvering target if the
ratio of missile speed to target speed is larger than

J2 and the navigation constant is greater than 1 [13].
Thus, if there are no limitations on initial heading
angles and positions of the missile, PPN has global
capturability. However, such global capturability is
not meaningful for real applications because the
guidance command from PPN tends to blow up as the
missile  approaches the maneuvering target.
Augmented PN (APN) laws [15,16], namely PN laws
with target acceleration as a bias term, produce a
bounded control for maneuvering targets. Although
APN laws are energy optimal and practical, they need
to be implemented with special care because the
capture region is not specified. Indeed, some
nonlinear engagement simulation results for APN
show that the capture region is limited. It is natural,
therefore, to inquire about new guidance laws which,
on the one hand, are subject to bounded control but,
on the other hand, ensure global capturability against
maneuvering targets.

We note the guidance law based on H,, control

theory [17], in which target maneuvering is regarded
as an unpredictable disturbance. The proposed law is
obtained as a solution to the associated Hamilton-

Jacobi partial differential inequality with the H_ -
norm for the measure of missile performance; it also
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provides bounded control for maneuvering targets.
However, this H~ guidance law does not have global
capturability because the storage function that
guarantees the internal stability of the guidance law is
not a Lyapunov function. Furthermore, the He
guidance law is not practical for aerodynamically
controlled missiles because its command direction is
not confined in the normal direction to the missile
velocity vector.

A nonlinear system with input is well known to be
globally stabilizable by feedback control if there is a
Control Lyapunov Function (CLF) that satisfies
Artstein’s inequality [18]. A CLF can be understood as
the generalization of a Lyapunov function for a system
with input. Based on the existence of a CLF, Sontag’s
formula generates a feedback control law that globally
and asymptotically stabilizes the system if the system
is affine in control [19]. Sontag’s formula has an
inverse optimality because it can be interpreted as a
solution to the Hamilton-Jacobi partial differential
equation, which is the necessary condition of an
optimal control problem [20-22]. The first application
of Sontag’s formula to a guidance problem can be
found in [23], where the guidance laws are defined in
the line-of-sight (LOS) reference frame. For
aerodynamically controlled missiles, the command
component along the velocity direction is usually
neglected because it is hard to implement. In this case,
the capture region of the laws may be severely
restricted even though the CLF method provides
global capturability.

Fortunately, the equations of motion for a missile
against a maneuvering target in the LOS reference
frame can be represented as a nonlinear system with
an input affine in control. The equilibrium subspace
that ensures the maneuvering target interception
within a finite time can also be specified. On the basis
of these facts, we derived a new guidance law by
using Sontag’s formula to deliver the state to the
equilibrium subspace. The proposed law always
makes the missile state approach the equilibrium
subspace in the Lyapunov sense, as long as the missile
speed is greater than the speed of the target. Hence,
the proposed law has global capturability in the sense
that, under any initial launch conditions, the missile
can intercept any maneuvering targets. Because
Sontag’s formula has inverse optimality, the proposed
nonlinear guidance law can also optimally minimize
the integral cost of the input energy and the range-
varying weighted states. By including a proper choice
of a gain in the proposed guidance law, we can ensure
that maximum magnitude of the guidance command is
smaller than that of APN. This property is useful in
real applications because large miss distances are
produced when the command is saturated.

In the following section, the basic notions of a CLF
and Sontag’s formula are briefly mentioned. In

Section 3, we formulate the equations of motion for a
missile pursuing a maneuvering target in the LOS
frame and we specify the equilibrium subspace that
corresponds to the state constraints that guarantee a
maneuvering target intercept. Next, we discuss the
derivation of the nonlinear guidance law, along with
some of its properties, including the implementation
aspect. In Section 5, we discuss the nonlinear
simulations that were conducted to investigate the
performance of the proposed law, and we compare the
proposed law with APN for various launch conditions
and target maneuvers. Finally, we present our
conclusions in Section 6.

2. SONTAG’S FORMULA
Consider a nonlinear system with input given by
x=f(x,u), (N

where xeR” and ueR™, and assume that the
system is continuous and satisfies 7(0,4)=0 for a
certain relaxed control u. In such a case, Artstein
[18] has shown that the system in (1) is stabilizable

by a closed-loop relaxed control if and only if there is
a smooth, proper, and positive definite function of

V:R" >R,, such that V(0)=0, V(x)>0 if
x#0 and
inf[a—g(x—)f(x,u)}<0 forall x=0. 2)
u X

Moreover, the system is globally stabilizable by a
closed-loop relaxed control if and only if ¥ can be
with  V(x) > o

chosen in R” as ||x||—>oo.

Equation (2) is called Artstein’s inequality or the
stabilizability condition. The function ¥ is a CLF.
Artstein’s inequality implies that if it is possible to
make the derivative negative at every point by an
appropriate choice of u, then we can stabilize the
system with a properly chosen V for the closed-loop
system. The function ¥ also implies that the
existence of a CLF is equivalent to the existence of
the asymptotically stabilizing feedback control
u=k(x), which is smooth everywhere except

possibly at x=0, thatis, £(0)=0 [19].
Suppose that the system is affine in control and can
be expressed as

x = f(x)+ G(x)u. (3)
Furthermore, if we assume the existence of a CLF, we

can use the following equation to obtain a feedback
control law that stabilizes the system:
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2 T
| at+ya +bg(b) (%/G) for %G?&O

k= b
0 for a—VGzO,
o
4)
where
a=21, b= GGT(‘ZJ , 5)

and ¢q(b) is a real function ¢g:R —> R such that
qg(0)=0 and bg(h)>0for b#0. Note that (4),

which is called Sontag’s formula [19], satisfies
Artstein’s inequality as follows:
. OV{x oV(x
7= e Z ek <0
for all x#0.

Now, we investigate the relationship between
Sontag’s formula and optimal control problems
[21,22]. Let us consider the following optimal control
problem: Find u which minimizes

J= f [q(x)wT(x)u(x)]dr subjectto (3). (7)

The solution of this optimal control problem is given
by
1 (oY
u' =—=G’ (—] : (®)

Here ¥~ denotes the value function and is given by
the following solution of the Hamilton-Jacobi-
Bellman partial differential equation, which is a
necessary condition of this optimal control problem:

1ovV” oY
GG
ox 4 0Ox (

f—— p ] +q(x)=0. )
29

Assume that there exists a scalar function A(x) such
that

8L = i(x)a—V for every x. 10)
Ox Ox
Substituting (10) into (8) and (9), we then obtain
2 — T
{—‘” Ve +bq(x)}(a—VG] for ‘2—VG £0
x

b ox

*
u =

0 for a—VG=0.
ox
(11)

Equation (11) is exactly the same as (4) if
g(x) = g(b(x)), (12)

where b(x) is given by (5). We conclude therefore

that Sontag’s formula represents the optimal control
which minimizes

J= j;” [q(b(x)) +u” (x)u(x)} dr. (13)

The optimality of Sontag’s formula depends on the
choice of V' aswellas ¢(.).

In general, an optimal guidance problem includes
target interception conditions as a terminal cost or a
terminal constraint. Because (13) does not contain
any terminal states, the feedback control law given in
(4) may not guarantee the interception of the target
within a finite time. As explained in Section 4, this
drawback can be overcome by considering the states
that are inversely weighted by the square of a relative
range for the choice of ¢(.).

3. MISSILE KINEMATICS AND
EQUILIBRIUM SUBSPAPCE

3.1. Equations of motion

Three-dimensional engagement geometry between
the missile and the maneuvering target is shown in Fig.
1. Here, V,,(V,) and @, (d,) denote the velocity
and acceleration vector of the missile (target),
respectively. Four reference coordinate frames are
used to define the equations of motion: the inertial
reference frame (I); the LOS reference frame (L) with

unit vector [i;, jL,kL]T, the missile velocity frame

M) with [i,,, jm,km]T, and the target velocity frame

(T) with [i,,},,k]". The angles y;, and 6,
denote the azimuth and elevation angles of the LOS to
the inertial reference frame, respectively; and
v, (v,) and 6, (6,), the azimuth and elevation
angles of the missile (target) velocity to the LOS

Fig. 1. 3-D interception geometry.
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reference frame. A direction cosine matrix from frame
1 to frame 2 is given by

=T,(-0)T, ()

Oy OV SO iy (14)
= —S‘//l' Cl//i 0 ’
—sbcy;  —sGsy; b,

Equations of motion of the engagement can be
derived as follows: the relative range vector from the

missile to the target 7 is given by

F=rip =5 —T,, (15)
where 7, and 7 denote the position vectors of the

missile and the target, respectively.
The LOS rate to the [-frame @; is defined as
@y 2 A0 +A,j; + Ak
L ‘x L y]L. z L. (16)
=y sOLi, =6 j +ycOrk;.

Let @,

the T-frame with respect to the L-frame, respectively.
Then, we have

and @, denote the rate of the M-frame and

@, =,,80,,i, T TV ,€0,.k,, 5 17

@, = V/tsgtlt - et]t +‘//t09tkt- (18)
We assume that the missile and the target are
aerodynamically controlled. For these assumptions to
be confirmed, the acceleration vector of each vehicle
must be normal to the velocity, as expressed in the
following equations:

Q!

+a, k (19)

m =amy]m mz"m>

a, =2 e+ aky. (20)

The kinematics of the missile and the target is given
by

ar - = d, . .
7Z:Vt—Vm=E(rzL)=rzL+wL><r, 2D
av, . d,. . s (A N T

tm = dt(VmZm) = lem +(a)L +wm)XVm’(22)
av, . d N
j:at:E(Vlt) Vzt (a)L+a),)><Vt. (23)

Substituting (16)-(20) into (21)~(23) and rearrang-

ing them, we obtain the following equations of motion

[24]:

r= Vtcetc‘//t - Vmcemar’/m’

- a sy 1o

Q =z  rm L
4 r (

m

Vtcet‘“//t - Vmcngl//m )

- W—'"(V,s@, ~Vus6,,),
r

W, = + IJ(Vtcﬂtsy/, ~ VO SW

V”I ce/ﬂ cgm
_ 56,5
rc@,,

9: :C;/i+ sy t0r (
f r

v (

amy _ l S ngWmtgL
r

(v,sH, —v,,56,, ),

VtcatSl//t - Vmcemsyjm )

V,s6, =V,,s0 )

. 4q 1{ sB,cy 16
W, = y _;[ t“Y YL

+1 {(V.cB.sw, -V _c6
V,c6, o6, j(t 1SYy = V€ ms'//m)

_ sGsy,

(Vtsz9t -V,,s0,, ),

rch,
6, = (V,s6, ~V,,s6,, )/r,

v = (Vtcets‘//t V€OV )/r
(24)
Let us consider the following relative velocity

components in the L-frame:

v, 2V,cbcy, —V,,cO,,ct
-V,c6,.sv,, (25)

Vv, Y Vs, —~V,s0,.

vy 2 V,cO,sy,

Because y/; does not affect the behavior of the other
states, it can be ignored in the analysis. By using (25),
the equations of motion given in (24) are greatly
simplified as

xz[r Ve Yy, Y, HLJT, (26)
i vy ] -
0 00
(2 +v2)/r 000
J@=| (vt —ve v, [r |, Gx)=]0 1 0,27
(v te; +v vz)/r g g (1)
L v [r ] - -
and
w=lu, u, u], 28)
where
Uy = (_atzs‘gzc‘//t - azyS‘//t) (29)
+ (amzsema//m + amySl//m)v
uy =(asGsv, + ayevr, o

+ ( Az SO SY y = CpyCY 1y ),
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U, = (a,zct?, ) — (a6, )- €20)

The acceleration equations given in (29)-(31) clearly
represent the relation between the guidance command
and the missile acceleration command normal to the
missile velocity.

3.2. Equilibrium subspace

Sontag’s formula requires f(0)=0 as the
equilibrium point. Although f(0)=0 is achieved by
the equilibrium subspace {x|v, =v, =v, =0}, this
equilibrium subspace does not guarantee target

interception. Suppose that v, =0 and v, =0. Then,

y
from (25), we obtain

6
v, =0=> 56,7 =0
vm
_veOsy, __ vicOsy, (2)

- eq
v, =0= sy,

eq | 2,
Vmcem VZ,, —VtZS 9,

By using (32), we can easily show that for

v, =v, =0

A
C=Vy (vy=vz=0

=v,clcy, —v, Ol eyl
2 2 29 2
=veley, - \/vm -V (1 -c“bc t//,)

<0 for v, >v,.

(33)

Therefore, the equilibrium subspace of the system is
defined as

xeqz{x|vy=vz=0andvx=c}. 34)

The condition v, =v, =0 implies that the normal

components of the relative velocity to the LOS are
zero. Because 7 <0, r approaches 0 as far as the
equilibrium subspace given in (34) is satisfied. For a
non-maneuvering target, ¢ remains constant but it is
time varying if the target maneuver is present. The
equilibrium subspace given by (34) specifies the
condition under which the missile intercepts the target
within a finite time.

4. NONLINEAR GUIDANCE LAW

4.1. Guidance law formulation

We used Sontag’s formula to derive the nonlinear
guidance law that delivers the state to the equilibrium
subspace. As mentioned in Section 2, the basic
formulation of the guidance law depends largely on
how we choose the Lyapunov function candidate,

V(x), and the state function, g(b), that is included

in the cost.
Suppose that a Lyapunov function candidate for the
nonlinear system is given by

14 :%[(vx —c)2 +v)2, +VZ2:|. (35)

If we find a feedback control that enables the time
derivative of V' to become negative for all ¢, then

Ve, vy, and v, eventually approach the equilibrium
subspace, thereby ensuring the target interception.
Note that the storage function U =/1vx(v§ +vz2 )/ r,
which is used by Yang and Chen [17], is not a
Lyapunov function because U is possibly zero for

v, =0 and for v,=v,=0. Hence, we cannot

guarantee the global capturability of the guidance law
obtained by using U.

Each term included in Sontag’s formula is
calculated as
oV
5;:[0 (vx—c) v, V. OJ, (36)
ov
S;G:[(vx—c) vy vz], 37
ov
a= a—f
1 1
=(vx —c);(v)% +v22)+;(vzt¢9L ——vx)vi
: (38)
—;(ij,té?L +v,v, )vz
C(2, 2
:-;(vy+vz),
ov . r(oV d 2 2 2
bzaGG [a) =(v, —¢) +v, +v;. (39)

Next, we choose ¢g(b) in (13) as

N¢? N'¢? 2
q(b) =2 =2 [(vx—c) +v§+v§} (40)
¥ Id

where ¢ is given by (33) and N’ is an arbitrary
chosen positive constant that tunes the weighting of
the state function in the cost. The nonlinear guidance
law is then calculated as

T
uz[ux u, uz]

for (v, —c)’ +v2 +v2 20 (41)

0 for (vx—c)2+vi+v22 =0,
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where
N(x)=

2 2
£ a2) el [ 02 o oy —ef 2

(v, —¢)’ 2 492

(42)
From (13) and (40), the proposed law given by (41)
with (42) minimizes

' 2
J = E" {2]:/; V(x)+uT(x)u(x)}dt (43)

subject to (3) with (27).

Note that the first term in the integrand of (43) is
weighted by the inverse square of r . In the beginning
of the engagement, r is so large that a small
weighting is applied to the first term. This small
weighting implies that the proposed law initially
makes the missile follow a control energy
minimization path. As the missile approaches the
target, the weighting increases infinitely so that the
guidance law enforces ¥ (x) — 0, which denotes the

target interception condition. From (42) and (43),
we see that N’ plays a role in tuning the overall
command history. As N’ Dbecomes larger, the
magnitude of the guidance command grows to provide
more agile maneuvers of the missile. In this case,
however, the consumption of the control energy
increases. By a proper choice of N', the maximum
magnitude of the guidance command from the
proposed law can be smaller than that of APN, which
is regarded as a solution to the optimal control
problem of minimizing the control energy only
[15,16]. A direct comparison between the proposed
law and APN in the formulation level is impossible
because the optimal control problem given in (43)
does not contain any terminal constraints that can be
found in the optimal control problem for APN.

4.2. Implementation aspect

Since the guidance law given in (41) is defined in
the L-frame, it cannot be directly used for missiles
controlled by aerodynamic force and moment. By

using (31), a,,. isuniquely determined as

1
Apyy = _J
m

[uz - athH,]. (44)
From (29) and (30), we can eliminate g, to
obtain

Apryy = U SY y = U, CY o, (45)

where

=u, +a

z’_lx x tzsata//t + atyS‘//tﬂ (46)
Uy, =u, +a,sOsy; —aycy,.

Some sensor systems and target tracking filters are
required because the proposed guidance law is a full
state—feedback control law. Suppose that the missile is
equipped with an inertial measurement unit (IMU)
and a seeker. Like other guidance laws associated with
target maneuvering, a target-tracking filter is essential
for implementing the proposed guidance law. Hence,
we assume that the relative range and the relative
target maneuver with respect to the missile can be
estimated by target-tracking filters supplied by the
IMU and the seeker. The following states are
observable:

1) IMU
- ;7,,{ , I7,£, al . missile position, velocity, and

acceleration in the I-frame
- ¥, O, ®: missile body Euler angles for the I-frame

2) Seeker

- Vg, by, g, seeker gimbal angles for the missile
body

- /iy(z v, /), A,(= v, /r): LOS rate along y and z

axis of the L-frame

3) Target-tracking filter

- r, F=v,: relative range and time rate

- a a., .

, ¢ relative target acceleration to the

X ay )
missile in the L-frame.

By using the Euler angles from the IMU and the
seeker, the direction cosine matrix from the I-frame to
the L-frame is calculated as

ck=cLtch, (47)
where B denotes the body frame and

CF =T (D), (O)T, (¥), )

Ch =T (@ )T (0T, ().

The missile velocity vector in the L-frame is then
calculated as

vE-ctyl, (49)

By using (49), we can give the flight path angles for
the L-frame by

Wy = tan~! 22 (50)
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1 VmLz .
WL (s Y

On the other hand, the target velocity vector in the L-
frame can be calculated by

[

), = tan

helvk vk vt

(1)
- T _ Lyl
—[vx vy, vz] -Crv,.
By using (51), we obtain
vk yL
w,=tan 2 6, =tan™! 2 . (52)

LR R

Finally, we calculate the target acceleration described
in the T-frame as

0 X
ay |=Cp || ay |=Cfap, |, (53)
atz az
where
Cl =T,(-6)T,(v,). (54)

The target maneuver term included in APN is not a

relative acceleration to the missile but an absolute one.

For an autonomous mission, APN also requires an
IMU to separate the absolute target acceleration from
the estimated relative acceleration. Therefore, APN
requires the same sensors for implementation as the
proposed law.

5. NUMERICAL EXAMPLES

In this section, the proposed nonlinear guidance
(NLG) law given by (44) and (45) is compared with
PPN-based APN for several engagement scenarios.
The capturability of three-dimensional PPN-based
APN is thought to be global. Three-dimensional TPN
and PPN-based APN are summarized in the appendix.

The initial conditions in the I-frame of the missile
and the target for nonlinear simulation are given by
- For the missile: x,(0)=y,(0)=z2,(0)=0m, V,

=1000m/s.

- For the target: x,(0)=5,000m, y,(0)=2,500m,

z,(0) =0m, ¥, =500m/s.

A circular maneuvering target with a 10g turn in the
y; —z; plane, which is shown in Fig. 2, was
considered in all the simulations. This kind of target
maneuver is known as an effective evasive maneuver

Fig. 2. Target maneuver plane for nonlinear simula-
tions.

(o2} ~
o o
i I3

(423
(=]
[

W
(=]
-

Mag. of guidance command (g)
-y
o
S

ZOﬁ

o4 - : . Lo ..v,_;+N'=9

-
o
1

Time (sec)

Fig. 3. Guidance command histories for NLG with
different N'values.

-4000°°-1000

Fig. 4. Trajectories for NLG with different N’
values.

policy for an aircraft against proportionally navigated
missiles [25].

First, we investigate the performance changes for
NLG with different N’ s. In this simulation, we
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(©) ¥,,(0)=0°,8,,(0) = 0°.

Fig. 5. Trajectory comparisons of NLG with N'=6 and APN with N = 4 (continue).

assume ,,(0)=120° and 6,,(0)=0°. As shown in
Fig. 3, we observed that the guidance command in the
beginning of the flight becomes large as N’
increases, whereas the maximum guidance command
for a small N’ value is large in the terminal flight
phase. For N’ >7, the maximum guidance command

occurs in the beginning of the flight. Because the
maximum guidance command is minimized near

N'=7, 6<N’'<8 is recommended for practical
application. As shown in Fig. 4, the resultant
trajectory approaches a straight line as N’ increases.
Indeed, for an infinitely large N', the trajectory
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-4000%_4000

® v,(0)=180°,6,,(0)=0°

Fig. 5. Trajectory comparisons of NLG with N'=6 and APN with N =4 (continue).

converges to a straight collision path.

The three-dimensional trajectory and guidance
command history comparisons between NLG with
N'=6 and APN with N =4 for various initial
heading angles of the missile are shown in Figs. 5 and
6, respectively. Note that for each initial heading angle

the APN trajectories are less curved than the NLG
trajectories. Fig. 6 also confirms that the magnitude of
the initial guidance command of APN is greater than
that of NLG. This result implies that faster heading
changes are produced by APN. As shown in Figs. 6(b)
to 6(d), for small heading angles the command
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Fig. 6. Guidance command comparisons of NL.G with N'=

magnitude of NLG in the terminal homing phase is
also smaller than that of APN. In the case of

¥,,(0)=180° and 6,(0)=0°,
APN does not capture the target but NLG can reach
the target with a very curved trajectory, as shown in

Fig. 5(f). From these simulations, we can see that the
guidance command of NLG needs to be of a smaller

the missile with

s 10 12 14 16 18
Time (sec)

O ¥n(0)=180",6,,(0)=0".

o
[°E|
+
@

6 and APN with N =4.

magnitude than that of APN. Moreover, NLG can
capture an evasively maneuvering target for the entire
domain of the initial heading angles whereas APN has
a bounded capture region for the initial heading angles.
Figs. 7 and 8 show a capture region of NLG with
N'=6 and APN with N =4 inthe y,,(0)—8, (0)
plane under missile command limitations of 50 g. In
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120 170

0
¥, O

Fig. 7. Capture region (shaded area) of the initial
heading angles for NLG (#;,, =50g).

I

Fig. 8. Capture region (shaded area) of the initial
heading angles for APN (u;,, =50g).

this simulation, we considered the same target
maneuver as in the previous case. A miss distance of
up to 10 meters is regarded as a successful
interception of the target. Cases in which the flight
time is greater than 60 seconds are treated as failures,
even if the miss distance criterion is satisfied. Fig. 7
shows that NLG can capture the target for most of the
v,,(0)—6,,(0) plane, even if the capture region of

APN is somewhat restricted. For NLG, if the missile is
launched with the initial heading angles of

-120° <y, (0) < -150°, the missile cannot intercept
m

the target due to the command limitation. For several
initial  heading angles in the range of

40° <y, (0)<120°, the missile with NLG does not

satisfy the flight time limitation even though the miss
distance is within 10 meters. These performances are
largely due to the fact that the guidance command
from NLG is too small to initially correct the initial
heading errors and does not grow as r increases. In
contrast to the case of NLG, all of the miss distances
of APN are caused by the command limitation.

As outlined in the general Transactions/Journals
paper author’s guide, your complete submission
should include a hard copy plus any graphics files and
captions for figures, prepared as required in the guide.
In addition, be sure to send at the same time (via
whatever medium) a copy of your Word binary file.
Always make sure to keep your original, in case your
paper needs to be retransmitted.

6. CONCLUSION

We have proposed a nonlinear guidance law for
aerodynamically  controlled  missiles  against
maneuvering targets. Because the proposed guidance
law is derived from Sontag’s formula, it has global
capturability as well as optimality. The basic
requirements for practical implementation of the
proposed law are an onboard IMU and a target-
tracking filter combined with a seeker; this equipment
is also required in the implementation of a
conventional APN. The proposed law has a larger
launch envelope than APN against maneuvering
targets even if the command limit is introduced. This
phenomenon occurs mainly because the magnitude of
the command produced by the proposed law is smaller
than that of APN.

The proposed law is a special case of Sontag’s
formula for guidance application. Hence, it can be
used to derive an alternative guidance law with the
proper selection of a Lyapunov function and the cost
function.

APPENDIX: AUGMENTED
PROPORTIONAL NAVIGATION LAWS

APN, which is a variant of TPN, is concerned with
missile guidance against a constantly accelerated
target from the energy optimal perspective. Three-
dimensional APN in the L-frame based on the TPN
formulation can be obtained as follows:

T
gt =[ul™ ™ W +5CHa,  (59)

where 4, is the target acceleration defined in the T-

frame and CTL denotes the direction cosine matrix
from the T-frame to the L-frame, and

T
[ a2 wva, (56)

Here, the closing velocity is given by
V. ==v,, (57

and the LOS rate is given by

L1 T
a)Lz;[vytanBL -V, vy]. (58)
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The TPN command vector in the M-frame, aM , is

given by

T
~M a| _ ATPN ATPN ATPN
u —[umx Upy Uppr ]
(59)

T
:c%[ufPN u, N uZ”’N] +5C£4C%a,.

For aerodynamically controlled missiles, only the
ATPN

normal components to the missile velocity, u,

and uﬁZTP N are available.

Although TPN-based APN is energy optimal, its
capturability is not known. In fact, the capture region
of TPN is highly limited even for a target with a
constant speed [8]. PPN always guarantees target
interception when the ratio of the missile speed to
target speed is greater than V2 and the navigation
constant is greater than 1 [13]. We can therefore
deduce that PPN-based APN has global capturability.
The PPN-based APN in the M-frame can be
formulated as

T
~ a[ APPN  APPN  APPN
UgpN = |:umx umy Usnz :|
(60)
= N[@L XV, +%C£4c%a,).

As in the case of TPN-based APN, u,ﬁfp N and
APPN

U,y are only available for aerodynamically
controlled missiles. In this case, u,ﬁfp N , which is

introduced by the augmented target acceleration, is
also neglected and the command components normal
to the missile velocity are calculated as

aﬁ;’PN =-NV,, (/ixsé’mcy/m + iysé’msz//m - chem)
+0.5Na}!,

At = =NV, (=4S + Ay, ) +0.5Nay!,

(61)
where
ag,’[ = (YW s, + W ey, ) ay,
+ (Sl//msgta//t — Y SO sy, )azZ s
agf = (56, W ySW; — 56, 5Y W, )aty (62)

sgma//mseta//t + ngs‘//mset‘g'//t
+ a,,.
+¢6,,c6, =

In practice, A, can be ignored because it cannot be
measured by an on-board seeker.
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